File: mbsas_templates.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (55 lines) | stat: -rwxr-xr-x 1,584 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""!

@brief Test templates for MBSAS algorithm.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import matplotlib;

matplotlib.use('Agg');

from pyclustering.tests.assertion import assertion;

from pyclustering.cluster.mbsas import mbsas;

from pyclustering.utils import read_sample;
from pyclustering.utils.metric import type_metric, distance_metric;


class mbsas_test_template:
    @staticmethod
    def clustering(path, amount, threshold, expected, ccore, **kwargs):
        metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN));

        sample = read_sample(path);

        mbsas_instance = mbsas(sample, amount, threshold, ccore=ccore, metric=metric);
        mbsas_instance.process();

        clusters = mbsas_instance.get_clusters();
        representatives = mbsas_instance.get_representatives();

        obtained_length = 0;
        obtained_cluster_length = [];
        for cluster in clusters:
            obtained_length += len(cluster);
            obtained_cluster_length.append(len(cluster));

        assertion.eq(len(sample), obtained_length);
        assertion.eq(len(expected), len(clusters));
        assertion.eq(len(expected), len(representatives));
        assertion.ge(amount, len(clusters));

        dimension = len(sample[0]);
        for rep in representatives:
            assertion.eq(dimension, len(rep));

        expected.sort();
        obtained_cluster_length.sort();

        assertion.eq(expected, obtained_cluster_length);