1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
"""!
@brief Unit-tests for BANG algorithm.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import unittest
# Generate images without having a window appear.
import matplotlib
matplotlib.use('Agg')
from pyclustering.cluster.tests.bang_templates import bang_test_template
from pyclustering.cluster.bang import bang
from pyclustering.samples.definitions import SIMPLE_SAMPLES
class bang_unit_test(unittest.TestCase):
def test_clustering_sample_simple_1(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 8, 0.0, [5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 7, 0.0, [5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 6, 0.0, [5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 5, 0.0, [5, 5], 0, False)
def test_clustering_sample_simple_1_one_cluster(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, 0.0, [10], 0, False)
def test_clustering_diagonal_neighbors(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 3, 0.0, [10], 0, False)
def test_clustering_sample_simple_1_noise_only(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 6, 1000.0, [], 10, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 6, 0.0, [], 10, False, amount_threshold=20)
def test_clustering_sample_simple_2(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 7, 0.0, [5, 8, 10], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 6, 0.0, [5, 8, 10], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 1, 0.0, [23], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 6, 500.0, [], 23, False)
def test_clustering_sample_simple_3(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 7, 0.0, [10, 10, 10, 30], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 8, 0.0, [10, 10, 10, 30], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 1, 0.0, [60], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 6, 500.0, [], 60, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 6, 0.0, [], 60, False, amount_threshold=100)
def test_clustering_sample_simple_3_half_noise(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 2.5, [30], 30, False)
def test_clustering_sample_simple_4_one_cluster(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, 7, 0.0, [75], 0, False)
def test_clustering_sample_simple_5(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 8, 0.0, [15, 15, 15, 15], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 7, 0.0, [15, 15, 15, 15], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 6, 0.0, [15, 15, 15, 15], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 5, 0.0, [15, 15, 15, 15], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 1, 0.0, [60], 0, False)
def test_clustering_one_dimensional_data1(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 4, 0.0, [10, 10], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 0.0, [20], 0, False)
def test_clustering_one_dimensional_data2(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, 7, 0.0, [15, 20, 30, 80], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, 2, 0.0, [145], 0, False)
def test_clustering_one_dimensional_data_3_Similar(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 7, 0.0, [10, 20], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 0.0, [30], 0, False)
def test_clustering_sample_simple_10(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, 8, 0.0, [11, 11, 11], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, 7, 0.0, [11, 11, 11], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, 2, 0.0, [33], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, 1, 0.0, [33], 0, False)
def test_clustering_three_dimensional_data1(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 8, 0.0, [10, 10], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 7, 0.0, [10, 10], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 0.0, [20], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 1, 0.0, [20], 0, False)
def test_clustering_similar_points(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 8, 0.0, [5, 5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 7, 0.0, [5, 5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 5, 0.0, [5, 5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 2, 0.0, [15], 0, False)
def test_clustering_zero_column(self):
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE13, 6, 0.0, [5, 5], 0, False)
bang_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE13, 1, 0.0, [10], 0, False)
def test_visualize_no_failure_one_dimensional(self):
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 4, 0.0, False)
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, 7, 0.0, False)
def test_visualize_no_failure_two_dimensional(self):
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 8, 0.0, False)
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, 0.0, False)
def test_visualize_no_failure_three_dimensional(self):
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 8, 0.0, False)
bang_test_template.visualize(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 1, 0.0, False)
def test_animate_no_failure(self):
bang_test_template.animate(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 8, 0.0, False)
bang_test_template.animate(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 8, 0.0, False)
def test_argument_invalid_levels(self):
bang_test_template.exception(ValueError, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 0, 0.0, False)
bang_test_template.exception(ValueError, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, -1, 0.0, False)
bang_test_template.exception(ValueError, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, -10, 0.0, False)
def test_argument_invalid_density(self):
bang_test_template.exception(ValueError, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, -1.0, False)
bang_test_template.exception(ValueError, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, -2.0, False)
def test_argument_empty_data(self):
bang_test_template.exception(ValueError, [], 1, 0.0, False)
def test_incorrect_data(self):
self.assertRaises(ValueError, bang, [], 1)
def test_incorrect_levels(self):
self.assertRaises(ValueError, bang, [[0], [1], [2]], 0)
def test_incorrect_density_threshold(self):
self.assertRaises(ValueError, bang, [[0], [1], [2]], 1, density_threshold=-0.1)
def test_incorrect_amount_threshold(self):
self.assertRaises(ValueError, bang, [[0], [1], [2]], 2, amount_threshold=-1)
|