1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
"""!
@brief Unit-tests for cluster generator.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import unittest
# Generate images without having a window appear.
import matplotlib
matplotlib.use('Agg')
from pyclustering.cluster.generator import data_generator
from pyclustering.tests.assertion import assertion
class generator_unit_tests(unittest.TestCase):
def assert_dimension(self, data, expected_dimension):
for point in data:
assertion.eq(expected_dimension, len(point))
def assert_distribution(self, data, sizes, centers, widths):
index_cluster = 0
index_cluster_point = 0
actual_means = [[0.0 for _ in range(len(data[0])) ] for _ in range(len(sizes))]
for index_point in range(len(data)):
for index_dimension in range(len(data[0])):
actual_means[index_cluster][index_dimension] += data[index_point][index_dimension]
index_cluster_point += 1
if index_cluster_point == sizes[index_cluster]:
index_cluster_point = 0
index_cluster += 1
for index_cluster in range(len(actual_means)):
for index_dimension in range(len(data[0])):
actual_means[index_cluster][index_dimension] /= sizes[index_cluster]
assertion.ge(centers[index_cluster][index_dimension], actual_means[index_cluster][index_dimension] - widths[index_cluster])
assertion.le(centers[index_cluster][index_dimension], actual_means[index_cluster][index_dimension] + widths[index_cluster])
def test_generate_one_dimension(self):
data = data_generator(2, 1, [10, 10]).generate()
assertion.eq(20, len(data))
self.assert_dimension(data, 1)
def test_generate_two_dimension(self):
data = data_generator(2, 2, [10, 15]).generate()
assertion.eq(25, len(data))
self.assert_dimension(data, 2)
def test_generate_one_cluster(self):
data = data_generator(1, 10, 20).generate()
assertion.eq(20, len(data))
self.assert_dimension(data, 10)
def test_generate_similar_clusters(self):
data = data_generator(10, 2, 10).generate()
assertion.eq(100, len(data))
self.assert_dimension(data, 2)
def test_generate_with_centers(self):
data = data_generator(3, 1, [5, 10, 15], [[0.0], [-5.0], [5.0]]).generate()
assertion.eq(30, len(data))
self.assert_distribution(data, [5, 10, 15], [[0.0], [-5.0], [5.0]], [1.0, 1.0, 1.0])
|