1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
"""!
@brief Unit-tests for K-Medians algorithm.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import unittest
import numpy
# Generate images without having a window appear.
import matplotlib
matplotlib.use('Agg')
from pyclustering.cluster.tests.kmedians_templates import KmediansTestTemplates
from pyclustering.cluster.kmedians import kmedians
from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.utils import read_sample
from pyclustering.utils.metric import type_metric, distance_metric
class KmediansUnitTest(unittest.TestCase):
def testClusterAllocationSampleSimple1(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False)
def testClusterAllocationSampleSimple1Euclidean(self):
metric = distance_metric(type_metric.EUCLIDEAN)
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSampleSimple1EuclideanSquare(self):
metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSampleSimple1Manhattan(self):
metric = distance_metric(type_metric.MANHATTAN)
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSampleSimple1Chebyshev(self):
metric = distance_metric(type_metric.CHEBYSHEV)
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSampleSimple1Minkowski(self):
metric = distance_metric(type_metric.MINKOWSKI, degree=2.0)
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSampleSimple1UserDefined(self):
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, metric=metric)
def testClusterAllocationSample1NumpyArrayUserDefined(self):
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
input_data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1))
initial_centers = numpy.array([[3.7, 5.5], [6.7, 7.5]])
KmediansTestTemplates.templateLengthProcessData(input_data, initial_centers, [5, 5], False, metric=metric)
def testClusterAllocationSample2NumpyArrayUserDefined(self):
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN_SQUARE))
input_data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2))
initial_centers = numpy.array([[3.5, 4.8], [6.9, 7], [7.5, 0.5]])
KmediansTestTemplates.templateLengthProcessData(input_data, initial_centers, [10, 5, 8], False, metric=metric)
def testClusterOneAllocationSampleSimple1(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[1.0, 2.5]], [10], False)
def testClusterAllocationSampleSimple2(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], False)
def testClusterOneAllocationSampleSimple2(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[0.5, 0.2]], [23], False)
def testClusterAllocationSampleSimple3(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]], [10, 10, 10, 30], False)
def testClusterOneAllocationSampleSimple3(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1]], [60], False)
def testClusterAllocationSampleSimple5(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], [15, 15, 15, 15], False)
def testClusterOneAllocationSampleSimple5(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 0.0]], [60], False)
def testClusterAllocationSample1WrongInitialNumberCenters1(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[2.8, 9.5], [3.5, 6.6], [1.3, 4.0]], None, False)
def testClusterAllocationSample1WrongInitialNumberCenters2(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[2.8, 9.5], [3.5, 6.6], [1.3, 4.0], [1.2, 4.5]], None, False)
def testClusterAllocationSample2WrongInitialNumberCenters(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5], [7.3, 4.5], [3.1, 5.4]], None, False)
def testClusterTheSameData1(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [ [4.1], [7.3] ], [10, 20], False)
def testClusterTheSameData2(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, [ [1.1, 1.0], [3.0, 3.1], [5.0, 4.9] ], [5, 5, 5], False)
def testOddSize(self):
# Bug issue #428 (https://github.com/annoviko/pyclustering/issues/428)
data = [[59.00732, 9.748167], [59.00608, 9.749117], [59.0047, 9.749933]]
KmediansTestTemplates.templateLengthProcessData(data, [[59.00732, 9.748167], [59.00608, 9.749117]], None, False, tolerance=10)
def testDifferentDimensions(self):
kmedians_instance = kmedians([ [0, 1, 5], [0, 2, 3] ], [ [0, 3] ], ccore=False)
self.assertRaises(NameError, kmedians_instance.process)
def testClusterAllocationOneDimensionData(self):
KmediansTestTemplates.templateClusterAllocationOneDimensionData(False)
def testClusterAllocationTheSameObjectsOneInitialCenter(self):
KmediansTestTemplates.templateClusterAllocationTheSameObjects(20, 1, False)
def testClusterAllocationTheSameObjectsTwoInitialCenters(self):
KmediansTestTemplates.templateClusterAllocationTheSameObjects(15, 2, False)
def testClusterAllocationTheSameObjectsThreeInitialCenters(self):
KmediansTestTemplates.templateClusterAllocationTheSameObjects(25, 3, False)
def testClusterAllocationSampleRoughMediansSimple10(self):
initial_medians = [[0.0772944481804071, 0.05224990900863469], [1.6021689021213712, 1.0347579135245601], [2.3341008076636096, 1.280022869739064]]
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, initial_medians, None, False)
def testTotalWCESimple4(self):
sample = [[0, 1, 5], [7, 8, 9], [0, 2, 3], [4, 5, 6]]
initial_medians = [[0, 3, 2], [4, 6, 5]]
kmedians_instance = kmedians(sample, initial_medians, ccore=False)
self.assertNotEqual(self, kmedians_instance.get_total_wce(), 16.0)
def testPredictOnePoint(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[0.3, 0.2]], [0], False)
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[4.1, 1.1]], [1], False)
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[2.1, 1.9]], [2], False)
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[2.1, 4.1]], [3], False)
def testPredictOnePointUserMetric(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[0.3, 0.2]], [0], False, metric=metric)
def testPredictTwoPoints(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[0.3, 0.2], [2.1, 1.9]], [0, 2], False)
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[2.1, 4.1], [2.1, 1.9]], [3, 2], False)
def testPredictTwoPointsUserMetric(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, [[0.3, 0.2], [2.1, 1.9]], [0, 2], False, metric=metric)
def testPredictFourPoints(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
to_predict = [[0.3, 0.2], [4.1, 1.1], [2.1, 1.9], [2.1, 4.1]]
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, to_predict, [0, 1, 2, 3], False)
def testPredictFivePoints(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
to_predict = [[0.3, 0.2], [4.1, 1.1], [3.9, 1.1], [2.1, 1.9], [2.1, 4.1]]
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, to_predict, [0, 1, 1, 2, 3], False)
def testPredictFivePointsUserMetric(self):
centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
to_predict = [[0.3, 0.2], [4.1, 1.1], [3.9, 1.1], [2.1, 1.9], [2.1, 4.1]]
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmediansTestTemplates.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, centers, to_predict, [0, 1, 1, 2, 3], False, metric=metric)
def testItermax0(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [], False, itermax=0)
def testItermax1(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, itermax=1)
def testItermax10Simple01(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], False, itermax=10)
def testItermax10Simple02(self):
KmediansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], False, itermax=10)
def test_incorrect_data(self):
self.assertRaises(ValueError, kmedians, [], [[1]])
def test_incorrect_centers(self):
self.assertRaises(ValueError, kmedians, [[0], [1], [2]], [])
def test_incorrect_tolerance(self):
self.assertRaises(ValueError, kmedians, [[0], [1], [2]], [[1]], -1.0)
def test_incorrect_itermax(self):
self.assertRaises(ValueError, kmedians, [[0], [1], [2]], [[1]], itermax=-5)
|