File: ut_kmedoids.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (360 lines) | stat: -rwxr-xr-x 22,140 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""!

@brief Unit-tests for K-Medoids algorithm.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import unittest

# Generate images without having a window appear.
import matplotlib
matplotlib.use('Agg')

from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.cluster.tests.kmedoids_templates import kmedoids_test_template

from pyclustering.samples.definitions import SIMPLE_SAMPLES, SIMPLE_ANSWERS

from pyclustering.utils import read_sample
from pyclustering.utils.metric import type_metric, distance_metric


class KmedoidsUnitTest(unittest.TestCase):
    def testClusterAllocationSampleSimple1(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], False)

    def testClusterAllocationSampleSimple1WrongInitials1(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [1, 2, 3, 4], [2, 2, 3, 3], False)

    def testClusterAllocationSampleSimple1DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1DistanceMatrixNumpy(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], False, data_type='distance_matrix', input_type='numpy')

    def testClusterAllocationSampleSimple1Euclidean(self):
        metric = distance_metric(type_metric.EUCLIDEAN)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1EuclideanDistanceMatrix(self):
        metric = distance_metric(type_metric.EUCLIDEAN)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1SquareEuclidean(self):
        metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1SquareEuclideanDistanceMatrix(self):
        metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1Manhattan(self):
        metric = distance_metric(type_metric.MANHATTAN)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1ManhattanDistanceMatrix(self):
        metric = distance_metric(type_metric.MANHATTAN)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1Chebyshev(self):
        metric = distance_metric(type_metric.CHEBYSHEV)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1ChebyshevDistanceMatrix(self):
        metric = distance_metric(type_metric.CHEBYSHEV)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1Minkowski(self):
        metric = distance_metric(type_metric.MINKOWSKI, degree=2.0)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1MinkowskiDistanceMatrix(self):
        metric = distance_metric(type_metric.MINKOWSKI, degree=2.0)
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1Gower(self):
        metric = distance_metric(type_metric.GOWER, data=read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1))
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1GowerDistanceMatrix(self):
        metric = distance_metric(type_metric.GOWER, data=read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1))
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1UserDefined(self):
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False)

    def testClusterAllocationSampleSimple1UserDefinedDistanceMatrix(self):
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        kmedoids_test_template.templateLengthProcessWithMetric(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], metric, False, data_type='distance_matrix')

    def testClusterOneAllocationSampleSimple1(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [5], [10], False)

    def testClusterOneAllocationSampleSimple1DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [5], [10], False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple1WithMedoidsInitializer(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, None, [5, 5], False, initialize_medoids=2)

    def testClusterAllocationSampleSimple2(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [3, 12, 20], [10, 5, 8], False)

    def testClusterAllocationSampleSimple2DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [3, 12, 20], [10, 5, 8], False, data_type='distance_matrix')

    def testClusterOneAllocationSampleSimple2(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [10], [23], False)

    def testClusterOneAllocationSampleSimple2DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [10], [23], False, data_type='distance_matrix')

    def testClusterAllocationSampleSimple2WithMedoidsInitializer(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, None, [10, 5, 8], False, initialize_medoids=3)

    def testClusterAllocationSampleSimple3(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [4, 12, 25, 37], [10, 10, 10, 30], False)

    def testClusterAllocationSampleSimple3DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [4, 12, 25, 37], [10, 10, 10, 30], False, data_type='distance_matrix')

    def testClusterOneAllocationSampleSimple3(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [30], [60], False)

    def testClusterAllocationSampleSimple3WithMedoidsInitializer(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, None, [10, 10, 10, 30], False, initialize_medoids=4)

    def testClusterAllocationSampleSimple5(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [4, 18, 34, 55], [15, 15, 15, 15], False)

    def testClusterAllocationSampleSimple5DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [4, 18, 34, 55], [15, 15, 15, 15], False, data_type='distance_matrix')

    def testClusterOneAllocationSampleSimple5(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [35], [60], False)

    def testClusterTheSameData1(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [2, 20], [10, 20], False)

    def testClusterTheSameData1DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [2, 20], [10, 20], False, data_type='distance_matrix')

    def testClusterTheSameData2(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, [2, 7, 12], [5, 5, 5], False)

    def testClusterTheSameData2DistanceMatrix(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, [2, 7, 12], [5, 5, 5], False, data_type='distance_matrix')


    def testClusterAllocationOneDimensionData(self):
        kmedoids_test_template.templateClusterAllocationOneDimensionData(False)


    def testClusterAllocationTheSameObjectsOneInitialMedoid(self):
        kmedoids_test_template.templateClusterAllocationTheSameObjects(20, 1, False)

    def testClusterAllocationTheSameObjectsTwoInitialMedoids(self):
        kmedoids_test_template.templateClusterAllocationTheSameObjects(15, 2, False)

    def testClusterAllocationTheSameObjectsThreeInitialMedoids(self):
        kmedoids_test_template.templateClusterAllocationTheSameObjects(25, 3, False)


    def testPredictOnePoint(self):
        medoids = [4, 12, 25, 37]
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[0.3, 0.2]], [0], False)
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[4.1, 1.1]], [3], False)
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[2.1, 1.9]], [2], False)
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[2.1, 4.1]], [1], False)

    def testPredictOnePointUserMetric(self):
        medoids = [4, 12, 25, 37]
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[0.3, 0.2]], [0], False, metric=metric)

    def testPredictTwoPoints(self):
        medoids = [4, 12, 25, 37]
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[0.3, 0.2], [2.1, 1.9]], [0, 2], False)
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[2.1, 4.1], [2.1, 1.9]], [1, 2], False)

    def testPredictTwoPointsUserMetric(self):
        medoids = [4, 12, 25, 37]
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, [[0.3, 0.2], [2.1, 1.9]], [0, 2], False, metric=metric)

    def testPredictFourPoints(self):
        medoids = [4, 12, 25, 37]
        to_predict = [[0.3, 0.2], [4.1, 1.1], [2.1, 1.9], [2.1, 4.1]]
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, to_predict, [0, 3, 2, 1], False)

    def testPredictFivePoints(self):
        medoids = [4, 12, 25, 37]
        to_predict = [[0.3, 0.2], [4.1, 1.1], [3.9, 1.1], [2.1, 1.9], [2.1, 4.1]]
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, to_predict, [0, 3, 3, 2, 1], False)

    def testPredictFivePointsUserMetric(self):
        medoids = [4, 12, 25, 37]
        to_predict = [[0.3, 0.2], [4.1, 1.1], [3.9, 1.1], [2.1, 1.9], [2.1, 4.1]]
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        kmedoids_test_template.templatePredict(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, medoids, to_predict, [0, 3, 3, 2, 1], False, metric=metric)


    def testAllocatedRequestedClustersSampleSimple01(self):
        sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 1, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 2, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 3, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 4, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 5, None, False)

    def testAllocatedRequestedClustersSampleSimple02(self):
        sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 1, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 2, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 3, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 4, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 5, None, False)

    def testAllocatedRequestedClustersSampleSimple03(self):
        sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 2, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 5, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 8, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 10, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 15, None, False)

    def testAllocatedRequestedClustersSampleSimple04(self):
        sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 10, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 25, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 40, None, False)


    def testAllocatedRequestedClustersWithTheSamePoints1(self):
        # Bug issue #366 - Kmedoids returns incorrect number of clusters.
        sample = [[0.0, 0.0], [0.1, 0.1], [0.0, 0.0], [0.1, 0.2]]
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 3, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 3, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 2, None, False)
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 1, None, False)

    def testAllocatedRequestedClustersWithTheSamePoints2(self):
        sample = [[0.23, 0.2], [-0.1, 0.1], [0.0, 0.9], [0.1, -0.2], [0.8, 0.1], [-0.1, 0.1], [-0.4, -0.2], [0.0, 0.9]]
        answers = [1, 2, 3, 4, 5, 6, 6, 6]
        for expected_amount in answers:
            kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, expected_amount, None, False)

    def testAllocatedRequestedClustersWithTotallyTheSamePoints(self):
        # Bug issue #366 - Kmedoids returns incorrect number of clusters.
        sample = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
        kmedoids_test_template.templateAllocateRequestedClusterAmount(sample, 1, None, False)


    def testItermax0(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [], False, itermax=0)

    def testItermax1(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], False, itermax=1)

    def testItermax10Simple01(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 9], [5, 5], False, itermax=10)

    def testItermax10Simple02(self):
        kmedoids_test_template.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [3, 12, 20], [10, 5, 8], False, itermax=10)


    def testSimple01AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, SIMPLE_ANSWERS.ANSWER_SIMPLE1, False, random_state=1000)

    def testSimple01AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, SIMPLE_ANSWERS.ANSWER_SIMPLE1, False, random_state=1000, data_type='distance_matrix')

    def testSimple02AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, SIMPLE_ANSWERS.ANSWER_SIMPLE2, False, random_state=1000)

    def testSimple02AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, SIMPLE_ANSWERS.ANSWER_SIMPLE2, False, random_state=1000, data_type='distance_matrix')

    def testSimple03AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, SIMPLE_ANSWERS.ANSWER_SIMPLE3, False, random_state=1000)

    def testSimple03AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, SIMPLE_ANSWERS.ANSWER_SIMPLE3, False, random_state=1000, data_type='distance_matrix')

    def testSimple04AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, SIMPLE_ANSWERS.ANSWER_SIMPLE4, False, random_state=1000)

    def testSimple04AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, SIMPLE_ANSWERS.ANSWER_SIMPLE4, False, random_state=1000, data_type='distance_matrix')

    def testSimple05AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, SIMPLE_ANSWERS.ANSWER_SIMPLE5, False, random_state=1000)

    def testSimple05AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, SIMPLE_ANSWERS.ANSWER_SIMPLE5, False, random_state=1000, data_type='distance_matrix')

    def testSimple06AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE6, SIMPLE_ANSWERS.ANSWER_SIMPLE6, False, random_state=1000)

    def testSimple06AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE6, SIMPLE_ANSWERS.ANSWER_SIMPLE6, False, random_state=1000, data_type='distance_matrix')

    def testSimple07AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, SIMPLE_ANSWERS.ANSWER_SIMPLE7, False, random_state=1000)

    def testSimple07AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, SIMPLE_ANSWERS.ANSWER_SIMPLE7, False, random_state=1000, data_type='distance_matrix')

    def testSimple08AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, SIMPLE_ANSWERS.ANSWER_SIMPLE8, False, random_state=1000)

    def testSimple08AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, SIMPLE_ANSWERS.ANSWER_SIMPLE8, False, random_state=1000, data_type='distance_matrix')

    def testSimple09AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, SIMPLE_ANSWERS.ANSWER_SIMPLE9, False, random_state=1000)

    def testSimple09AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, SIMPLE_ANSWERS.ANSWER_SIMPLE9, False, random_state=1000, data_type='distance_matrix')

    def testSimple10AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, SIMPLE_ANSWERS.ANSWER_SIMPLE10, False, random_state=1000)

    def testSimple10AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE10, SIMPLE_ANSWERS.ANSWER_SIMPLE10, False, random_state=1000, data_type='distance_matrix')

    def testSimple11AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, SIMPLE_ANSWERS.ANSWER_SIMPLE11, False, random_state=1000)

    def testSimple11AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, SIMPLE_ANSWERS.ANSWER_SIMPLE11, False, random_state=1000, data_type='distance_matrix')

    def testSimple12AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, SIMPLE_ANSWERS.ANSWER_SIMPLE12, False, random_state=1000)

    def testSimple12AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, SIMPLE_ANSWERS.ANSWER_SIMPLE12, False, random_state=1000, data_type='distance_matrix')

    def testSimple13AnswerByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE13, SIMPLE_ANSWERS.ANSWER_SIMPLE13, False, random_state=1000)

    def testSimple13AnswerDistanceMatrixByCore(self):
        kmedoids_test_template.clustering_with_answer(SIMPLE_SAMPLES.SAMPLE_SIMPLE13, SIMPLE_ANSWERS.ANSWER_SIMPLE13, False, random_state=1000, data_type='distance_matrix')


    def test_incorrect_data(self):
        self.assertRaises(ValueError, kmedoids, [], [1])

    def test_incorrect_centers(self):
        self.assertRaises(ValueError, kmedoids, [[0], [1], [2]], [])

    def test_incorrect_tolerance(self):
        self.assertRaises(ValueError, kmedoids, [[0], [1], [2]], [1], -1.0)

    def test_incorrect_itermax(self):
        self.assertRaises(ValueError, kmedoids, [[0], [1], [2]], [1], itermax=-5)