File: ut_ttsas.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (71 lines) | stat: -rwxr-xr-x 3,807 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""!

@brief Unit-tests for TTSAS algorithm.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""

import unittest;
import matplotlib;

matplotlib.use('Agg');

from pyclustering.cluster.tests.ttsas_template import ttsas_test;
from pyclustering.utils.metric import type_metric, distance_metric;

from pyclustering.samples.definitions import SIMPLE_SAMPLES;


class ttsas_unit_tests(unittest.TestCase):
    def testClusteringSampleSimple1(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1.0, 2.0, [5, 5], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10.0, 20.0, [10], False);

    def testClusteringSampleSimple1Euclidean(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1.0, 2.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN));
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10.0, 20.0, [10], False, metric=distance_metric(type_metric.EUCLIDEAN));

    def testClusteringSampleSimple1EuclideanSquare(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1.0, 2.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10.0, 20.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 100.0, 200.0, [10], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE));

    def testClusteringSampleSimple1Manhattan(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1.0, 2.0, [5, 5], False, metric=distance_metric(type_metric.MANHATTAN));
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10.0, 20.0, [10], False, metric=distance_metric(type_metric.MANHATTAN));

    def testClusteringSampleSimple1Chebyshev(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1.0, 2.0, [5, 5], False, metric=distance_metric(type_metric.CHEBYSHEV));
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10.0, 20.0, [10], False, metric=distance_metric(type_metric.CHEBYSHEV));

    def testClusteringSampleSimple2(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 1.0, 2.0, [5, 8, 10], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 10.0, 20.0, [23], False);

    def testClusteringSampleSimple3(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 1.0, 2.0, [10, 10, 10, 30], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 10.0, 20.0, [60], False);

    def testOneDimentionalPoints1(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 1.0, 2.0, [10, 10], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 10.0, 20.0, [20], False);

    def testOneDimentionalPoints2(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 1.0, 2.0, [10, 20], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 10.0, 20.0, [30], False);

    def testThreeDimentionalPoints(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 1.0, 2.0, [10, 10], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 10.0, 20.0, [20], False);

    def testTheSamePoints1(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 1.0, 1.5, [5, 5, 5], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 0.001, 0.002, [5, 5, 5], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 1000, 2000, [15], False);

    def testTheSamePoints2(self):
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 1.0, 2.0, [10, 20], False);
        ttsas_test.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 10.0, 20.0, [30], False);