File: xmeans.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (663 lines) | stat: -rwxr-xr-x 28,247 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""!

@brief Cluster analysis algorithm: X-Means
@details Implementation based on papers @cite article::xmeans::1, @cite article::xmeans::mndl

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import copy
import numpy

from enum import IntEnum
from math import log

from pyclustering.cluster.encoder import type_encoding
from pyclustering.cluster.kmeans import kmeans
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer

from pyclustering.core.metric_wrapper import metric_wrapper
from pyclustering.core.wrapper import ccore_library

import pyclustering.core.xmeans_wrapper as wrapper

from pyclustering.utils import distance_metric, type_metric


class splitting_type(IntEnum):
    """!
    @brief Enumeration of splitting types that can be used as splitting creation of cluster in X-Means algorithm.
    
    """
    
    ## Bayesian information criterion (BIC) to approximate the correct number of clusters.
    ## Kass's formula is used to calculate BIC:
    ## \f[BIC(\theta) = L(D) - \frac{1}{2}pln(N)\f]
    ##
    ## The number of free parameters \f$p\f$ is simply the sum of \f$K - 1\f$ class probabilities, \f$MK\f$ centroid coordinates, and one variance estimate:
    ## \f[p = (K - 1) + MK + 1\f]
    ##
    ## The log-likelihood of the data:
    ## \f[L(D) = n_jln(n_j) - n_jln(N) - \frac{n_j}{2}ln(2\pi) - \frac{n_jd}{2}ln(\hat{\sigma}^2) - \frac{n_j - K}{2}\f]
    ##
    ## The maximum likelihood estimate (MLE) for the variance:
    ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||^2\f]
    BAYESIAN_INFORMATION_CRITERION = 0
    
    ## Minimum noiseless description length (MNDL) to approximate the correct number of clusters @cite article::xmeans::mndl.
    ## Beheshti's formula is used to calculate upper bound:
    ## \f[Z = \frac{\sigma^2 \sqrt{2K} }{N}(\sqrt{2K} + \beta) + W - \sigma^2 + \frac{2\alpha\sigma}{\sqrt{N}}\sqrt{\frac{\alpha^2\sigma^2}{N} + W - \left(1 - \frac{K}{N}\right)\frac{\sigma^2}{2}} + \frac{2\alpha^2\sigma^2}{N}\f]
    ##
    ## where \f$\alpha\f$ and \f$\beta\f$ represent the parameters for validation probability and confidence probability.
    ##
    ## To improve clustering results some contradiction is introduced:
    ## \f[W = \frac{1}{n_j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f]
    ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f]
    MINIMUM_NOISELESS_DESCRIPTION_LENGTH = 1


class xmeans:
    """!
    @brief Class represents clustering algorithm X-Means.
    @details X-means clustering method starts with the assumption of having a minimum number of clusters, 
             and then dynamically increases them. X-means uses specified splitting criterion to control 
             the process of splitting clusters. Method K-Means++ can be used for calculation of initial centers.
             
             CCORE implementation of the algorithm uses thread pool to parallelize the clustering process.
    
    Here example how to perform cluster analysis using X-Means algorithm:
    @code
        from pyclustering.cluster import cluster_visualizer
        from pyclustering.cluster.xmeans import xmeans
        from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
        from pyclustering.utils import read_sample
        from pyclustering.samples.definitions import SIMPLE_SAMPLES

        # Read sample 'simple3' from file.
        sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)

        # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will
        # start analysis.
        amount_initial_centers = 2
        initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers).initialize()

        # Create instance of X-Means algorithm. The algorithm will start analysis from 2 clusters, the maximum
        # number of clusters that can be allocated is 20.
        xmeans_instance = xmeans(sample, initial_centers, 20)
        xmeans_instance.process()

        # Extract clustering results: clusters and their centers
        clusters = xmeans_instance.get_clusters()
        centers = xmeans_instance.get_centers()

        # Print total sum of metric errors
        print("Total WCE:", xmeans_instance.get_total_wce())

        # Visualize clustering results
        visualizer = cluster_visualizer()
        visualizer.append_clusters(clusters, sample)
        visualizer.append_cluster(centers, None, marker='*', markersize=10)
        visualizer.show()
    @endcode

    Visualization of clustering results that were obtained using code above and where X-Means algorithm allocates four clusters.
    @image html xmeans_clustering_simple3.png "Fig. 1. X-Means clustering results (data 'Simple3')."

    By default X-Means clustering algorithm uses Bayesian Information Criterion (BIC) to approximate the correct number
    of clusters. There is an example where another criterion Minimum Noiseless Description Length (MNDL) is used in order
    to find optimal amount of clusters:
    @code
        from pyclustering.cluster import cluster_visualizer
        from pyclustering.cluster.xmeans import xmeans, splitting_type
        from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
        from pyclustering.utils import read_sample
        from pyclustering.samples.definitions import FCPS_SAMPLES

        # Read sample 'Target'.
        sample = read_sample(FCPS_SAMPLES.SAMPLE_TARGET)

        # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will start analysis.
        random_seed = 1000
        amount_initial_centers = 3
        initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers, random_state=random_seed).initialize()

        # Create instance of X-Means algorithm with MNDL splitting criterion.
        xmeans_mndl = xmeans(sample, initial_centers, 20, splitting_type=splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH, random_state=random_seed)
        xmeans_mndl.process()

        # Extract X-Means MNDL clustering results.
        mndl_clusters = xmeans_mndl.get_clusters()

        # Visualize clustering results.
        visualizer = cluster_visualizer(titles=['X-Means with MNDL criterion'])
        visualizer.append_clusters(mndl_clusters, sample)
        visualizer.show()
    @endcode

    @image html xmeans_clustering_mndl_target.png "Fig. 2. X-Means MNDL clustering results (data 'Target')."

    As in many others algorithms, it is possible to specify metric that should be used for cluster analysis, for
    example, Chebyshev distance metric:
    @code
        # Create instance of X-Means algorithm with Chebyshev distance metric.
        chebyshev_metric = distance_metric(type_metric.CHEBYSHEV)
        xmeans_instance = xmeans(sample, initial_centers, max_clusters_amount, metric=chebyshev_metric).process()
    @endcode

    @see center_initializer

    """
    
    def __init__(self, data, initial_centers=None, kmax=20, tolerance=0.001, criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore=True, **kwargs):
        """!
        @brief Constructor of clustering algorithm X-Means.
        
        @param[in] data (array_like): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
        @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: `[center1, center2, ...]`,
                    if it is not specified then X-Means starts from the random center.
        @param[in] kmax (uint): Maximum number of clusters that can be allocated.
        @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing.
        @param[in] criterion (splitting_type): Type of splitting creation (by default `splitting_type.BAYESIAN_INFORMATION_CRITERION`).
        @param[in] ccore (bool): Defines if C++ pyclustering library should be used instead of Python implementation.
        @param[in] **kwargs: Arbitrary keyword arguments (available arguments: `repeat`, `random_state`, `metric`, `alpha`, `beta`).

        <b>Keyword Args:</b><br>
            - repeat (unit): How many times K-Means should be run to improve parameters (by default is `1`).
               With larger `repeat` values suggesting higher probability of finding global optimum.
            - random_state (int): Seed for random state (by default is `None`, current system time is used).
            - metric (distance_metric): Metric that is used for distance calculation between two points (by default
               euclidean square distance).
            - alpha (double): Parameter distributed [0.0, 1.0] for alpha probabilistic bound \f$Q\left(\alpha\right)\f$.
               The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored.
            - beta (double): Parameter distributed [0.0, 1.0] for beta probabilistic bound \f$Q\left(\beta\right)\f$.
               The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored.

        """
        
        self.__pointer_data = numpy.array(data)
        self.__clusters = []
        self.__random_state = kwargs.get('random_state', None)
        self.__metric = copy.copy(kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE)))
        
        if initial_centers is not None:
            self.__centers = numpy.array(initial_centers)
        else:
            self.__centers = kmeans_plusplus_initializer(data, 2, random_state=self.__random_state).initialize()
        
        self.__kmax = kmax
        self.__tolerance = tolerance
        self.__criterion = criterion
        self.__total_wce = 0.0
        self.__repeat = kwargs.get('repeat', 1)
        self.__alpha = kwargs.get('alpha', 0.9)
        self.__beta = kwargs.get('beta', 0.9)

        self.__ccore = ccore and self.__metric.get_type() != type_metric.USER_DEFINED
        if self.__ccore is True:
            self.__ccore = ccore_library.workable()

        self.__verify_arguments()


    def process(self):
        """!
        @brief Performs cluster analysis in line with rules of X-Means algorithm.
        
        @return (xmeans) Returns itself (X-Means instance).
        
        @see get_clusters()
        @see get_centers()
        
        """
        
        if self.__ccore is True:
            self.__process_by_ccore()

        else:
            self.__process_by_python()

        return self


    def __process_by_ccore(self):
        """!
        @brief Performs cluster analysis using CCORE (C/C++ part of pyclustering library).

        """

        ccore_metric = metric_wrapper.create_instance(self.__metric)

        result = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion,
                                self.__alpha, self.__beta, self.__repeat, self.__random_state,
                                ccore_metric.get_pointer())

        self.__clusters = result[0]
        self.__centers = result[1]
        self.__total_wce = result[2][0]


    def __process_by_python(self):
        """!
        @brief Performs cluster analysis using python code.

        """

        self.__clusters = []
        while len(self.__centers) <= self.__kmax:
            current_cluster_number = len(self.__centers)

            self.__clusters, self.__centers, _ = self.__improve_parameters(self.__centers)
            allocated_centers = self.__improve_structure(self.__clusters, self.__centers)

            if current_cluster_number == len(allocated_centers):
                break
            else:
                self.__centers = allocated_centers

        self.__clusters, self.__centers, self.__total_wce = self.__improve_parameters(self.__centers)


    def predict(self, points):
        """!
        @brief Calculates the closest cluster to each point.

        @param[in] points (array_like): Points for which closest clusters are calculated.

        @return (list) List of closest clusters for each point. Each cluster is denoted by index. Return empty
                 collection if 'process()' method was not called.

        An example how to calculate (or predict) the closest cluster to specified points.
        @code
            from pyclustering.cluster.xmeans import xmeans
            from pyclustering.samples.definitions import SIMPLE_SAMPLES
            from pyclustering.utils import read_sample

            # Load list of points for cluster analysis.
            sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)

            # Initial centers for sample 'Simple3'.
            initial_centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]

            # Create instance of X-Means algorithm with prepared centers.
            xmeans_instance = xmeans(sample, initial_centers)

            # Run cluster analysis.
            xmeans_instance.process()

            # Calculate the closest cluster to following two points.
            points = [[0.25, 0.2], [2.5, 4.0]]
            closest_clusters = xmeans_instance.predict(points)
            print(closest_clusters)
        @endcode

        """
        nppoints = numpy.array(points)
        if len(self.__clusters) == 0:
            return []

        self.__metric.enable_numpy_usage()

        npcenters = numpy.array(self.__centers)
        differences = numpy.zeros((len(nppoints), len(npcenters)))
        for index_point in range(len(nppoints)):
            differences[index_point] = self.__metric(nppoints[index_point], npcenters)

        self.__metric.disable_numpy_usage()

        return numpy.argmin(differences, axis=1)


    def get_clusters(self):
        """!
        @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
        
        @return (list) List of allocated clusters.
        
        @see process()
        @see get_centers()
        @see get_total_wce()
        
        """

        return self.__clusters


    def get_centers(self):
        """!
        @brief Returns list of centers for allocated clusters.
        
        @return (list) List of centers for allocated clusters.
        
        @see process()
        @see get_clusters()
        @see get_total_wce()
        
        """
         
        return self.__centers


    def get_cluster_encoding(self):
        """!
        @brief Returns clustering result representation type that indicate how clusters are encoded.
        
        @return (type_encoding) Clustering result representation.
        
        @see get_clusters()
        
        """
        
        return type_encoding.CLUSTER_INDEX_LIST_SEPARATION


    def get_total_wce(self):
        """!
        @brief Returns sum of Euclidean Squared metric errors (SSE - Sum of Squared Errors).
        @details Sum of metric errors is calculated using distance between point and its center:
                 \f[error=\sum_{i=0}^{N}euclidean_square_distance(x_{i}-center(x_{i}))\f]

        @see process()
        @see get_clusters()

        """

        return self.__total_wce


    def __search_optimial_parameters(self, local_data):
        """!
        @brief Split data of the region into two cluster and tries to find global optimum by running k-means clustering
                several times (defined by 'repeat' argument).

        @param[in] local_data (list): Points of a region that should be split into two clusters.

        @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce).

        """
        optimal_wce, optimal_centers, optimal_clusters = float('+inf'), None, None

        for _ in range(self.__repeat):
            candidates = 5
            if len(local_data) < candidates:
                candidates = len(local_data)

            local_centers = kmeans_plusplus_initializer(local_data, 2, candidates, random_state=self.__random_state).initialize()

            kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric)
            kmeans_instance.process()

            local_wce = kmeans_instance.get_total_wce()
            if local_wce < optimal_wce:
                optimal_centers = kmeans_instance.get_centers()
                optimal_clusters = kmeans_instance.get_clusters()
                optimal_wce = local_wce

        return optimal_clusters, optimal_centers, optimal_wce


    def __improve_parameters(self, centers, available_indexes=None):
        """!
        @brief Performs k-means clustering in the specified region.
        
        @param[in] centers (list): Cluster centers, if None then automatically generated two centers using center initialization method.
        @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None then all points are used.
        
        @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce).
        
        """

        if available_indexes and len(available_indexes) == 1:
            index_center = available_indexes[0]
            return [available_indexes], self.__pointer_data[index_center], 0.0

        local_data = self.__pointer_data
        if available_indexes:
            local_data = [self.__pointer_data[i] for i in available_indexes]

        local_centers = centers
        if centers is None:
            clusters, local_centers, local_wce = self.__search_optimial_parameters(local_data)
        else:
            kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric).process()

            local_wce = kmeans_instance.get_total_wce()
            local_centers = kmeans_instance.get_centers()
            clusters = kmeans_instance.get_clusters()

        if available_indexes:
            clusters = self.__local_to_global_clusters(clusters, available_indexes)
        
        return clusters, local_centers, local_wce


    def __local_to_global_clusters(self, local_clusters, available_indexes):
        """!
        @brief Converts clusters in local region define by 'available_indexes' to global clusters.

        @param[in] local_clusters (list): Local clusters in specific region.
        @param[in] available_indexes (list): Map between local and global point's indexes.

        @return Global clusters.

        """

        clusters = []
        for local_cluster in local_clusters:
            current_cluster = []
            for index_point in local_cluster:
                current_cluster.append(available_indexes[index_point])

            clusters.append(current_cluster)

        return clusters

    
    def __improve_structure(self, clusters, centers):
        """!
        @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion.
        
        @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data).
        @param[in] centers (list): Centers of clusters.
        
        @return (list) Allocated centers for clustering.
        
        """

        allocated_centers = []
        amount_free_centers = self.__kmax - len(centers)

        for index_cluster in range(len(clusters)):
            # solve k-means problem for children where data of parent are used.
            (parent_child_clusters, parent_child_centers, _) = self.__improve_parameters(None, clusters[index_cluster])

            # If it's possible to split current data
            if len(parent_child_clusters) > 1:
                # Calculate splitting criterion
                parent_scores = self.__splitting_criterion([clusters[index_cluster]], [centers[index_cluster]])
                child_scores = self.__splitting_criterion([parent_child_clusters[0], parent_child_clusters[1]], parent_child_centers)
              
                split_require = False
                
                # Reallocate number of centers (clusters) in line with scores
                if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION:
                    if parent_scores < child_scores:
                        split_require = True
                    
                elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH:
                    # If its score for the split structure with two children is smaller than that for the parent structure, 
                    # then representing the data samples with two clusters is more accurate in comparison to a single parent cluster.
                    if parent_scores > child_scores:
                        split_require = True
                
                if (split_require is True) and (amount_free_centers > 0):
                    allocated_centers.append(parent_child_centers[0])
                    allocated_centers.append(parent_child_centers[1])
                    
                    amount_free_centers -= 1
                else:
                    allocated_centers.append(centers[index_cluster])

            else:
                allocated_centers.append(centers[index_cluster])
          
        return allocated_centers
     
     
    def __splitting_criterion(self, clusters, centers):
        """!
        @brief Calculates splitting criterion for input clusters.
        
        @param[in] clusters (list): Clusters for which splitting criterion should be calculated.
        @param[in] centers (list): Centers of the clusters.
        
        @return (double) Returns splitting criterion. High value of splitting criterion means that current structure is
                 much better.

        @see __bayesian_information_criterion(clusters, centers)
        @see __minimum_noiseless_description_length(clusters, centers)
        
        """
        
        if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION:
            return self.__bayesian_information_criterion(clusters, centers)
        
        elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH:
            return self.__minimum_noiseless_description_length(clusters, centers)

        else:
            assert 0


    def __minimum_noiseless_description_length(self, clusters, centers):
        """!
        @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion.
        
        @param[in] clusters (list): Clusters for which splitting criterion should be calculated.
        @param[in] centers (list): Centers of the clusters.
        
        @return (double) Returns splitting criterion in line with bayesian information criterion. 
                Low value of splitting cretion means that current structure is much better.
        
        @see __bayesian_information_criterion(clusters, centers)
        
        """
        
        score = float('inf')
        
        W = 0.0
        K = len(clusters)
        N = 0.0

        sigma_square = 0.0
        
        alpha = self.__alpha
        alpha_square = alpha * alpha
        beta = self.__beta

        for index_cluster in range(0, len(clusters), 1):
            Ni = len(clusters[index_cluster])
            if Ni == 0:
                return float('inf')
            
            Wi = 0.0
            for index_object in clusters[index_cluster]:
                Wi += self.__metric(self.__pointer_data[index_object], centers[index_cluster])
            
            sigma_square += Wi
            W += Wi / Ni
            N += Ni
        
        if N - K > 0:
            sigma_square /= (N - K)
            sigma = sigma_square ** 0.5
            
            Kw = (1.0 - K / N) * sigma_square
            Ksa = (2.0 * alpha * sigma / (N ** 0.5)) * (alpha_square * sigma_square / N + W - Kw / 2.0) ** 0.5
            UQa = W - Kw + 2.0 * alpha_square * sigma_square / N + Ksa

            score = sigma_square * K / N + UQa + sigma_square * beta * ((2.0 * K) ** 0.5) / N
        
        return score


    def __bayesian_information_criterion(self, clusters, centers):
        """!
        @brief Calculates splitting criterion for input clusters using bayesian information criterion.
        
        @param[in] clusters (list): Clusters for which splitting criterion should be calculated.
        @param[in] centers (list): Centers of the clusters.
        
        @return (double) Splitting criterion in line with bayesian information criterion.
                High value of splitting criterion means that current structure is much better.
                
        @see __minimum_noiseless_description_length(clusters, centers)
        
        """

        scores = [float('inf')] * len(clusters)     # splitting criterion
        dimension = len(self.__pointer_data[0])
          
        # estimation of the noise variance in the data set
        sigma_sqrt = 0.0
        K = len(clusters)
        N = 0.0
          
        for index_cluster in range(0, len(clusters), 1):
            for index_object in clusters[index_cluster]:
                sigma_sqrt += self.__metric(self.__pointer_data[index_object], centers[index_cluster])

            N += len(clusters[index_cluster])
      
        if N - K > 0:
            sigma_sqrt /= (N - K)
            p = (K - 1) + dimension * K + 1

            # in case of the same points, sigma_sqrt can be zero (issue: #407)
            sigma_multiplier = 0.0
            if sigma_sqrt <= 0.0:
                sigma_multiplier = float('-inf')
            else:
                sigma_multiplier = dimension * 0.5 * log(sigma_sqrt)
            
            # splitting criterion    
            for index_cluster in range(0, len(clusters), 1):
                n = len(clusters[index_cluster])

                L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * sigma_multiplier - (n - K) * 0.5
                
                # BIC calculation
                scores[index_cluster] = L - p * 0.5 * log(N)
                
        return sum(scores)


    def __verify_arguments(self):
        """!
        @brief Verify input parameters for the algorithm and throw exception in case of incorrectness.

        """
        if len(self.__pointer_data) == 0:
            raise ValueError("Input data is empty (size: '%d')." % len(self.__pointer_data))

        if len(self.__centers) == 0:
            raise ValueError("Initial centers are empty (size: '%d')." % len(self.__pointer_data))

        if self.__tolerance < 0:
            raise ValueError("Tolerance (current value: '%d') should be greater or equal to 0." %
                             self.__tolerance)

        if self.__repeat <= 0:
            raise ValueError("Repeat (current value: '%d') should be greater than 0." %
                             self.__repeat)

        if self.__alpha < 0.0 or self.__alpha > 1.0:
            raise ValueError("Parameter for the probabilistic bound Q(alpha) should in the following range [0, 1] "
                             "(current value: '%f')." % self.__alpha)

        if self.__beta < 0.0 or self.__beta > 1.0:
            raise ValueError("Parameter for the probabilistic bound Q(beta) should in the following range [0, 1] "
                             "(current value: '%f')." % self.__beta)