1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
|
"""!
@brief Data Structure: CF-Tree
@details Implementation based on paper @cite article::birch::1.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import numpy
from copy import copy
from pyclustering.utils import euclidean_distance_square
from pyclustering.utils import manhattan_distance
from pyclustering.utils import linear_sum, square_sum
from enum import IntEnum
class measurement_type(IntEnum):
"""!
@brief Enumeration of measurement types for CF-Tree.
@see cftree
"""
## Euclidian distance between centroids of clustering features.
CENTROID_EUCLIDEAN_DISTANCE = 0
## Manhattan distance between centroids of clustering features.
CENTROID_MANHATTAN_DISTANCE = 1
## Average distance between all objects from clustering features.
AVERAGE_INTER_CLUSTER_DISTANCE = 2
## Average distance between all objects within clustering features and between them.
AVERAGE_INTRA_CLUSTER_DISTANCE = 3
## Variance based distance between clustering features.
VARIANCE_INCREASE_DISTANCE = 4
class cfnode_type(IntEnum):
"""!
@brief Enumeration of CF-Node types that are used by CF-Tree.
@see cfnode
@see cftree
"""
## Undefined node.
CFNODE_DUMMY = 0
## Leaf node hasn't got successors, only entries.
CFNODE_LEAF = 1
## Non-leaf node has got successors and hasn't got entries.
CFNODE_NONLEAF = 2
class cfentry:
"""!
@brief Clustering feature representation.
@see cfnode
@see cftree
"""
@property
def number_points(self):
"""!
@brief Returns number of points that are encoded.
@return (uint) Number of encoded points.
"""
return self.__number_points
@property
def linear_sum(self):
"""!
@brief Returns linear sum.
@return (list) Linear sum.
"""
return self.__linear_sum
@property
def square_sum(self):
"""!
@brief Returns square sum.
@return (double) Square sum.
"""
return self.__square_sum
def __init__(self, number_points, linear_sum, square_sum):
"""!
@brief CF-entry constructor.
@param[in] number_points (uint): Number of objects that is represented by the entry.
@param[in] linear_sum (list): Linear sum of values that represent objects in each dimension.
@param[in] square_sum (double): Square sum of values that represent objects.
"""
self.__number_points = number_points
self.__linear_sum = numpy.array(linear_sum)
self.__square_sum = square_sum
self.__centroid = None
self.__radius = None
self.__diameter = None
def __copy__(self):
"""!
@returns (cfentry) Makes copy of the CF-entry instance.
"""
return cfentry(self.__number_points, self.__linear_sum, self.__square_sum)
def __repr__(self):
"""!
@return (string) Returns CF-entry representation.
"""
return "CF-Entry (N: '%s', LS: '%s', D: '%s')" % \
(self.number_points, self.linear_sum, str(self.get_diameter()))
def __str__(self):
"""!
@brief Default cfentry string representation.
"""
return self.__repr__()
def __add__(self, entry):
"""!
@brief Overloaded operator add. Performs addition of two clustering features.
@param[in] entry (cfentry): Entry that is added to the current.
@return (cfentry) Result of addition of two clustering features.
"""
number_points = self.number_points + entry.number_points
result_linear_sum = numpy.add(self.linear_sum, entry.linear_sum)
result_square_sum = self.square_sum + entry.square_sum
return cfentry(number_points, result_linear_sum, result_square_sum)
def __eq__(self, entry):
"""!
@brief Overloaded operator eq.
@details Performs comparison of two clustering features.
@param[in] entry (cfentry): Entry that is used for comparison with current.
@return (bool) True is both clustering features are equals in line with tolerance, otherwise False.
"""
tolerance = 0.00001
result = (self.__number_points == entry.number_points)
result &= ((self.square_sum + tolerance > entry.square_sum) and (self.square_sum - tolerance < entry.square_sum))
for index_dimension in range(0, len(self.linear_sum)):
result &= ((self.linear_sum[index_dimension] + tolerance > entry.linear_sum[index_dimension]) and (self.linear_sum[index_dimension] - tolerance < entry.linear_sum[index_dimension]))
return result
def get_distance(self, entry, type_measurement):
"""!
@brief Calculates distance between two clusters in line with measurement type.
@details In case of usage CENTROID_EUCLIDIAN_DISTANCE square euclidian distance will be returned.
Square root should be taken from the result for obtaining real euclidian distance between
entries.
@param[in] entry (cfentry): Clustering feature to which distance should be obtained.
@param[in] type_measurement (measurement_type): Distance measurement algorithm between two clusters.
@return (double) Distance between two clusters.
"""
if type_measurement is measurement_type.CENTROID_EUCLIDEAN_DISTANCE:
return euclidean_distance_square(entry.get_centroid(), self.get_centroid())
elif type_measurement is measurement_type.CENTROID_MANHATTAN_DISTANCE:
return manhattan_distance(entry.get_centroid(), self.get_centroid())
elif type_measurement is measurement_type.AVERAGE_INTER_CLUSTER_DISTANCE:
return self.__get_average_inter_cluster_distance(entry)
elif type_measurement is measurement_type.AVERAGE_INTRA_CLUSTER_DISTANCE:
return self.__get_average_intra_cluster_distance(entry)
elif type_measurement is measurement_type.VARIANCE_INCREASE_DISTANCE:
return self.__get_variance_increase_distance(entry)
else:
raise ValueError("Unsupported type of measurement '%s' is specified." % type_measurement)
def get_centroid(self):
"""!
@brief Calculates centroid of cluster that is represented by the entry.
@details It's calculated once when it's requested after the last changes.
@return (array_like) Centroid of cluster that is represented by the entry.
"""
if self.__centroid is not None:
return self.__centroid
self.__centroid = numpy.divide(self.linear_sum, self.number_points)
return self.__centroid
def get_radius(self):
"""!
@brief Calculates radius of cluster that is represented by the entry.
@details It's calculated once when it's requested after the last changes.
@return (double) Radius of cluster that is represented by the entry.
"""
if self.__radius is not None:
return self.__radius
N = self.number_points
centroid = self.get_centroid()
radius_part_1 = self.square_sum
radius_part_2 = 2.0 * numpy.dot(self.linear_sum, centroid)
radius_part_3 = N * numpy.dot(centroid, centroid)
self.__radius = ((1.0 / N) * (radius_part_1 - radius_part_2 + radius_part_3)) ** 0.5
return self.__radius
def get_diameter(self):
"""!
@brief Calculates diameter of cluster that is represented by the entry.
@details It's calculated once when it's requested after the last changes.
@return (double) Diameter of cluster that is represented by the entry.
"""
if self.__diameter is not None:
return self.__diameter
diameter_part = self.square_sum * self.number_points - 2.0 * numpy.dot(self.linear_sum, self.linear_sum) + self.square_sum * self.number_points
if diameter_part < 0.000000001:
self.__diameter = 0.0
else:
self.__diameter = (diameter_part / (self.number_points * (self.number_points - 1))) ** 0.5
return self.__diameter
def __get_average_inter_cluster_distance(self, entry):
"""!
@brief Calculates average inter cluster distance between current and specified clusters.
@param[in] entry (cfentry): Clustering feature to which distance should be obtained.
@return (double) Average inter cluster distance.
"""
linear_part_distance = numpy.dot(self.linear_sum, entry.linear_sum)
return ((entry.number_points * self.square_sum - 2.0 * linear_part_distance + self.number_points * entry.square_sum) / (self.number_points * entry.number_points)) ** 0.5
def __get_average_intra_cluster_distance(self, entry):
"""!
@brief Calculates average intra cluster distance between current and specified clusters.
@param[in] entry (cfentry): Clustering feature to which distance should be obtained.
@return (double) Average intra cluster distance.
"""
linear_part_first = numpy.add(self.linear_sum, entry.linear_sum)
linear_part_second = linear_part_first
linear_part_distance = numpy.dot(linear_part_first, linear_part_second)
general_part_distance = 2.0 * (self.number_points + entry.number_points) * (self.square_sum + entry.square_sum) - 2.0 * linear_part_distance
return (general_part_distance / ((self.number_points + entry.number_points) * (self.number_points + entry.number_points - 1.0))) ** 0.5
def __get_variance_increase_distance(self, entry):
"""!
@brief Calculates variance increase distance between current and specified clusters.
@param[in] entry (cfentry): Clustering feature to which distance should be obtained.
@return (double) Variance increase distance.
"""
linear_part_12 = numpy.add(self.linear_sum, entry.linear_sum)
variance_part_first = (self.square_sum + entry.square_sum) - \
2.0 * numpy.dot(linear_part_12, linear_part_12) / (self.number_points + entry.number_points) + \
(self.number_points + entry.number_points) * numpy.dot(linear_part_12, linear_part_12) / (self.number_points + entry.number_points)**2.0
linear_part_11 = numpy.dot(self.linear_sum, self.linear_sum)
variance_part_second = -(self.square_sum - (2.0 * linear_part_11 / self.number_points) + (linear_part_11 / self.number_points))
linear_part_22 = numpy.dot(entry.linear_sum, entry.linear_sum)
variance_part_third = -(entry.square_sum - (2.0 / entry.number_points) * linear_part_22 + entry.number_points * (1.0 / entry.number_points ** 2.0) * linear_part_22)
return variance_part_first + variance_part_second + variance_part_third
class cfnode:
"""!
@brief Representation of node of CF-Tree.
"""
def __init__(self, feature, parent):
"""!
@brief Constructor of abstract CF node.
@param[in] feature (cfentry): Clustering feature of the created node.
@param[in] parent (cfnode): Parent of the created node.
"""
## Clustering feature of the node.
self.feature = copy(feature)
## Pointer to the parent node (None for root).
self.parent = parent
## Type node (leaf or non-leaf).
self.type = cfnode_type.CFNODE_DUMMY
def __repr__(self):
"""!
@return (string) Default representation of CF node.
"""
return 'CF node %s, parent %s, feature %s' % (hex(id(self)), self.parent, self.feature)
def __str__(self):
"""!
@return (string) String representation of CF node.
"""
return self.__repr__()
def get_distance(self, node, type_measurement):
"""!
@brief Calculates distance between nodes in line with specified type measurement.
@param[in] node (cfnode): CF-node that is used for calculation distance to the current node.
@param[in] type_measurement (measurement_type): Measurement type that is used for calculation distance.
@return (double) Distance between two nodes.
"""
return self.feature.get_distance(node.feature, type_measurement)
class non_leaf_node(cfnode):
"""!
@brief Representation of clustering feature non-leaf node.
"""
@property
def successors(self):
"""!
@return (list) List of successors of the node.
"""
return self.__successors
def __init__(self, feature, parent, successors):
"""!
@brief Create CF Non-leaf node.
@param[in] feature (cfentry): Clustering feature of the created node.
@param[in] parent (non_leaf_node): Parent of the created node.
@param[in] successors (list): List of successors of the node.
"""
super().__init__(feature, parent)
## Node type in CF tree that is CFNODE_NONLEAF for non leaf node.
self.type = cfnode_type.CFNODE_NONLEAF
self.__successors = successors
def __repr__(self):
"""!
@return (string) Representation of non-leaf node representation.
"""
return 'Non-leaf node %s, parent %s, feature %s, successors: %d' % (hex(id(self)), self.parent, self.feature, len(self.successors))
def __str__(self):
"""!
@return (string) String non-leaf representation.
"""
return self.__repr__()
def insert_successor(self, successor):
"""!
@brief Insert successor to the node.
@param[in] successor (cfnode): Successor for adding.
"""
self.feature += successor.feature
self.successors.append(successor)
successor.parent = self
def merge(self, node):
"""!
@brief Merge non-leaf node to the current.
@param[in] node (non_leaf_node): Non-leaf node that should be merged with current.
"""
self.feature += node.feature
for child in node.successors:
child.parent = self
self.successors.append(child)
def get_farthest_successors(self, type_measurement):
"""!
@brief Find pair of farthest successors of the node in line with measurement type.
@param[in] type_measurement (measurement_type): Measurement type that is used for obtaining farthest successors.
@return (list) Pair of farthest successors represented by list [cfnode1, cfnode2].
"""
farthest_node1 = None
farthest_node2 = None
farthest_distance = 0.0
for i in range(0, len(self.successors)):
candidate1 = self.successors[i]
for j in range(i + 1, len(self.successors)):
candidate2 = self.successors[j]
candidate_distance = candidate1.get_distance(candidate2, type_measurement)
if candidate_distance > farthest_distance:
farthest_distance = candidate_distance
farthest_node1 = candidate1
farthest_node2 = candidate2
return [farthest_node1, farthest_node2]
def get_nearest_successors(self, type_measurement):
"""!
@brief Find pair of nearest successors of the node in line with measurement type.
@param[in] type_measurement (measurement_type): Measurement type that is used for obtaining nearest successors.
@return (list) Pair of nearest successors represented by list.
"""
nearest_node1 = None
nearest_node2 = None
nearest_distance = float("Inf")
for i in range(0, len(self.successors)):
candidate1 = self.successors[i]
for j in range(i + 1, len(self.successors)):
candidate2 = self.successors[j]
candidate_distance = candidate1.get_distance(candidate2, type_measurement)
if candidate_distance < nearest_distance:
nearest_distance = candidate_distance
nearest_node1 = candidate1
nearest_node2 = candidate2
return [nearest_node1, nearest_node2]
class leaf_node(cfnode):
"""!
@brief Represents clustering feature leaf node.
"""
@property
def entries(self):
"""!
@return (list) List of leaf nodes.
"""
return self.__entries
def __init__(self, feature, parent, entries):
"""!
@brief Create CF Leaf node.
@param[in] feature (cfentry): Clustering feature of the created node.
@param[in] parent (non_leaf_node): Parent of the created node.
@param[in] entries (list): List of entries of the node.
"""
super().__init__(feature, parent)
## Node type in CF tree that is CFNODE_LEAF for leaf node.
self.type = cfnode_type.CFNODE_LEAF
self.__entries = entries # list of clustering features
def __repr__(self):
"""!
@return (string) Default leaf node represenation.
"""
text_entries = "\n"
for entry in self.entries:
text_entries += "\t" + str(entry) + "\n"
return "Leaf-node: '%s', parent: '%s', feature: '%s', entries: '%d'" % \
(str(hex(id(self))), self.parent, self.feature, len(self.entries))
def __str__(self):
"""!
@return (string) String leaf node representation.
"""
return self.__repr__()
def insert_entry(self, entry):
"""!
@brief Insert new clustering feature to the leaf node.
@param[in] entry (cfentry): Clustering feature.
"""
self.feature += entry
self.entries.append(entry)
def merge(self, node):
"""!
@brief Merge leaf node to the current.
@param[in] node (leaf_node): Leaf node that should be merged with current.
"""
self.feature += node.feature
# Move entries from merged node
for entry in node.entries:
self.entries.append(entry)
def get_farthest_entries(self, type_measurement):
"""!
@brief Find pair of farthest entries of the node.
@param[in] type_measurement (measurement_type): Measurement type that is used for obtaining farthest entries.
@return (list) Pair of farthest entries of the node that are represented by list.
"""
farthest_entity1 = None
farthest_entity2 = None
farthest_distance = 0
for i in range(0, len(self.entries)):
candidate1 = self.entries[i]
for j in range(i + 1, len(self.entries)):
candidate2 = self.entries[j]
candidate_distance = candidate1.get_distance(candidate2, type_measurement)
if candidate_distance > farthest_distance:
farthest_distance = candidate_distance
farthest_entity1 = candidate1
farthest_entity2 = candidate2
return [farthest_entity1, farthest_entity2]
def get_nearest_index_entry(self, entry, type_measurement):
"""!
@brief Find nearest index of nearest entry of node for the specified entry.
@param[in] entry (cfentry): Entry that is used for calculation distance.
@param[in] type_measurement (measurement_type): Measurement type that is used for obtaining nearest entry to the specified.
@return (uint) Index of nearest entry of node for the specified entry.
"""
minimum_distance = float('Inf')
nearest_index = -1
for candidate_index in range(0, len(self.entries)):
candidate_distance = self.entries[candidate_index].get_distance(entry, type_measurement)
if candidate_distance < minimum_distance:
minimum_distance = candidate_distance
nearest_index = candidate_index
return nearest_index
def get_nearest_entry(self, entry, type_measurement):
"""!
@brief Find nearest entry of node for the specified entry.
@param[in] entry (cfentry): Entry that is used for calculation distance.
@param[in] type_measurement (measurement_type): Measurement type that is used for obtaining nearest entry to the specified.
@return (cfentry) Nearest entry of node for the specified entry.
"""
min_key = lambda cur_entity: cur_entity.get_distance(entry, type_measurement)
return min(self.entries, key=min_key)
class cftree:
"""!
@brief CF-Tree representation.
@details A CF-tree is a height-balanced tree with two parameters: branching factor and threshold.
"""
@property
def root(self):
"""!
@return (cfnode) Root of the tree.
"""
return self.__root
@property
def leafes(self):
"""!
@return (list) List of all leaf nodes in the tree.
"""
return self.__leafes
@property
def amount_nodes(self):
"""!
@return (unit) Number of nodes (leaf and non-leaf) in the tree.
"""
return self.__amount_nodes
@property
def amount_entries(self):
"""!
@return (uint) Number of entries in the tree.
"""
return self.__amount_entries
@property
def height(self):
"""!
@return (uint) Height of the tree.
"""
return self.__height
@property
def branch_factor(self):
"""!
@return (uint) Branching factor of the tree.
@details Branching factor defines maximum number of successors in each non-leaf node.
"""
return self.__branch_factor
@property
def threshold(self):
"""!
@return (double) Threshold of the tree that represents maximum diameter of sub-clusters that is formed by leaf node entries.
"""
return self.__threshold
@property
def max_entries(self):
"""!
@return (uint) Maximum number of entries in each leaf node.
"""
return self.__max_entries
@property
def type_measurement(self):
"""!
@return (measurement_type) Type that is used for measuring.
"""
return self.__type_measurement
def __init__(self, branch_factor, max_entries, threshold, type_measurement = measurement_type.CENTROID_EUCLIDEAN_DISTANCE):
"""!
@brief Create CF-tree.
@param[in] branch_factor (uint): Maximum number of children for non-leaf nodes.
@param[in] max_entries (uint): Maximum number of entries for leaf nodes.
@param[in] threshold (double): Maximum diameter of feature clustering for each leaf node.
@param[in] type_measurement (measurement_type): Measurement type that is used for calculation distance metrics.
"""
self.__root = None
self.__branch_factor = branch_factor # maximum number of children
if self.__branch_factor < 2:
self.__branch_factor = 2
self.__threshold = threshold # maximum diameter of sub-clusters stored at the leaf nodes
self.__max_entries = max_entries
self.__leafes = []
self.__type_measurement = type_measurement
# statistics
self.__amount_nodes = 0 # root, despite it can be None.
self.__amount_entries = 0
self.__height = 0 # tree size with root.
def get_level_nodes(self, level):
"""!
@brief Traverses CF-tree to obtain nodes at the specified level.
@param[in] level (uint): CF-tree level from that nodes should be returned.
@return (list) List of CF-nodes that are located on the specified level of the CF-tree.
"""
level_nodes = []
if level < self.__height:
level_nodes = self.__recursive_get_level_nodes(level, self.__root)
return level_nodes
def __recursive_get_level_nodes(self, level, node):
"""!
@brief Traverses CF-tree to obtain nodes at the specified level recursively.
@param[in] level (uint): Current CF-tree level.
@param[in] node (cfnode): CF-node from that traversing is performed.
@return (list) List of CF-nodes that are located on the specified level of the CF-tree.
"""
level_nodes = []
if level == 0:
level_nodes.append(node)
else:
for sucessor in node.successors:
level_nodes += self.__recursive_get_level_nodes(level - 1, sucessor)
return level_nodes
def insert_point(self, point):
"""!
@brief Insert point that is represented by list of coordinates.
@param[in] point (list): Point represented by list of coordinates that should be inserted to CF tree.
"""
entry = cfentry(len([point]), linear_sum([point]), square_sum([point]))
self.insert(entry)
def insert(self, entry):
"""!
@brief Insert clustering feature to the tree.
@param[in] entry (cfentry): Clustering feature that should be inserted.
"""
if self.__root is None:
node = leaf_node(entry, None, [entry])
self.__root = node
self.__leafes.append(node)
# Update statistics
self.__amount_entries += 1
self.__amount_nodes += 1
self.__height += 1 # root has successor now
else:
child_node_updation = self.__recursive_insert(entry, self.__root)
if child_node_updation is True:
# Splitting has been finished, check for possibility to merge (at least we have already two children).
if self.__merge_nearest_successors(self.__root) is True:
self.__amount_nodes -= 1
def find_nearest_leaf(self, entry, search_node = None):
"""!
@brief Search nearest leaf to the specified clustering feature.
@param[in] entry (cfentry): Clustering feature.
@param[in] search_node (cfnode): Node from that searching should be started, if None then search process will be started for the root.
@return (leaf_node) Nearest node to the specified clustering feature.
"""
if search_node is None:
search_node = self.__root
nearest_node = search_node
if search_node.type == cfnode_type.CFNODE_NONLEAF:
min_key = lambda child_node: child_node.feature.get_distance(entry, self.__type_measurement)
nearest_child_node = min(search_node.successors, key = min_key)
nearest_node = self.find_nearest_leaf(entry, nearest_child_node)
return nearest_node
def __recursive_insert(self, entry, search_node):
"""!
@brief Recursive insert of the entry to the tree.
@details It performs all required procedures during insertion such as splitting, merging.
@param[in] entry (cfentry): Clustering feature.
@param[in] search_node (cfnode): Node from that insertion should be started.
@return (bool) True if number of nodes at the below level is changed, otherwise False.
"""
# None-leaf node
if search_node.type == cfnode_type.CFNODE_NONLEAF:
return self.__insert_for_noneleaf_node(entry, search_node)
# Leaf is reached
else:
return self.__insert_for_leaf_node(entry, search_node)
def __insert_for_leaf_node(self, entry, search_node):
"""!
@brief Recursive insert entry from leaf node to the tree.
@param[in] entry (cfentry): Clustering feature.
@param[in] search_node (cfnode): None-leaf node from that insertion should be started.
@return (bool) True if number of nodes at the below level is changed, otherwise False.
"""
node_amount_updation = False
# Try to absorb by the entity
index_nearest_entry = search_node.get_nearest_index_entry(entry, self.__type_measurement)
nearest_entry = search_node.entries[index_nearest_entry] # get nearest entry
merged_entry = nearest_entry + entry
# Otherwise try to add new entry
if merged_entry.get_diameter() > self.__threshold:
# If it's not exceeded append entity and update feature of the leaf node.
search_node.insert_entry(entry)
# Otherwise current node should be splitted
if len(search_node.entries) > self.__max_entries:
self.__split_procedure(search_node)
node_amount_updation = True
# Update statistics
self.__amount_entries += 1
else:
search_node.entries[index_nearest_entry] = merged_entry
search_node.feature += entry
return node_amount_updation
def __insert_for_noneleaf_node(self, entry, search_node):
"""!
@brief Recursive insert entry from none-leaf node to the tree.
@param[in] entry (cfentry): Clustering feature.
@param[in] search_node (cfnode): None-leaf node from that insertion should be started.
@return (bool) True if number of nodes at the below level is changed, otherwise False.
"""
node_amount_updation = False
min_key = lambda child_node: child_node.get_distance(search_node, self.__type_measurement)
nearest_child_node = min(search_node.successors, key=min_key)
child_node_updation = self.__recursive_insert(entry, nearest_child_node)
# Update clustering feature of none-leaf node.
search_node.feature += entry
# Check branch factor, probably some leaf has been splitted and threshold has been exceeded.
if (len(search_node.successors) > self.__branch_factor):
# Check if it's aleady root then new root should be created (height is increased in this case).
if search_node is self.__root:
self.__root = non_leaf_node(search_node.feature, None, [search_node])
search_node.parent = self.__root
# Update statistics
self.__amount_nodes += 1
self.__height += 1
[new_node1, new_node2] = self.__split_nonleaf_node(search_node)
# Update parent list of successors
parent = search_node.parent
parent.successors.remove(search_node)
parent.successors.append(new_node1)
parent.successors.append(new_node2)
# Update statistics
self.__amount_nodes += 1
node_amount_updation = True
elif child_node_updation is True:
# Splitting has been finished, check for possibility to merge (at least we have already two children).
if self.__merge_nearest_successors(search_node) is True:
self.__amount_nodes -= 1
return node_amount_updation
def __merge_nearest_successors(self, node):
"""!
@brief Find nearest sucessors and merge them.
@param[in] node (non_leaf_node): Node whose two nearest successors should be merged.
@return (bool): True if merging has been successfully performed, otherwise False.
"""
merging_result = False
if node.successors[0].type == cfnode_type.CFNODE_NONLEAF:
[nearest_child_node1, nearest_child_node2] = node.get_nearest_successors(self.__type_measurement)
if len(nearest_child_node1.successors) + len(nearest_child_node2.successors) <= self.__branch_factor:
node.successors.remove(nearest_child_node2)
if nearest_child_node2.type == cfnode_type.CFNODE_LEAF:
self.__leafes.remove(nearest_child_node2)
nearest_child_node1.merge(nearest_child_node2)
merging_result = True
return merging_result
def __split_procedure(self, split_node):
"""!
@brief Starts node splitting procedure in the CF-tree from the specify node.
@param[in] split_node (cfnode): CF-tree node that should be splitted.
"""
if split_node is self.__root:
self.__root = non_leaf_node(split_node.feature, None, [ split_node ])
split_node.parent = self.__root
# Update statistics
self.__amount_nodes += 1
self.__height += 1
[new_node1, new_node2] = self.__split_leaf_node(split_node)
self.__leafes.remove(split_node)
self.__leafes.append(new_node1)
self.__leafes.append(new_node2)
# Update parent list of successors
parent = split_node.parent
parent.successors.remove(split_node)
parent.successors.append(new_node1)
parent.successors.append(new_node2)
# Update statistics
self.__amount_nodes += 1
def __split_nonleaf_node(self, node):
"""!
@brief Performs splitting of the specified non-leaf node.
@param[in] node (non_leaf_node): Non-leaf node that should be splitted.
@return (list) New pair of non-leaf nodes [non_leaf_node1, non_leaf_node2].
"""
[farthest_node1, farthest_node2] = node.get_farthest_successors(self.__type_measurement)
# create new non-leaf nodes
new_node1 = non_leaf_node(farthest_node1.feature, node.parent, [farthest_node1])
new_node2 = non_leaf_node(farthest_node2.feature, node.parent, [farthest_node2])
farthest_node1.parent = new_node1
farthest_node2.parent = new_node2
# re-insert other successors
for successor in node.successors:
if (successor is not farthest_node1) and (successor is not farthest_node2):
distance1 = new_node1.get_distance(successor, self.__type_measurement)
distance2 = new_node2.get_distance(successor, self.__type_measurement)
if distance1 < distance2:
new_node1.insert_successor(successor)
else:
new_node2.insert_successor(successor)
return [new_node1, new_node2]
def __split_leaf_node(self, node):
"""!
@brief Performs splitting of the specified leaf node.
@param[in] node (leaf_node): Leaf node that should be splitted.
@return (list) New pair of leaf nodes [leaf_node1, leaf_node2].
@warning Splitted node is transformed to non_leaf.
"""
# search farthest pair of entries
[farthest_entity1, farthest_entity2] = node.get_farthest_entries(self.__type_measurement)
# create new nodes
new_node1 = leaf_node(farthest_entity1, node.parent, [farthest_entity1])
new_node2 = leaf_node(farthest_entity2, node.parent, [farthest_entity2])
# re-insert other entries
for entity in node.entries:
if (entity is not farthest_entity1) and (entity is not farthest_entity2):
distance1 = new_node1.feature.get_distance(entity, self.__type_measurement)
distance2 = new_node2.feature.get_distance(entity, self.__type_measurement)
if distance1 < distance2:
new_node1.insert_entry(entity)
else:
new_node2.insert_entry(entity)
return [new_node1, new_node2]
|