1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
"""!
@brief Segmentation example of Hodgkin-Huxley oscillatory network for image segmentation.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import numpy
import os.path
import pickle
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from pyclustering.cluster.dbscan import dbscan
from pyclustering.nnet.dynamic_visualizer import dynamic_visualizer
from pyclustering.nnet.hhn import hhn_network, hhn_parameters
from pyclustering.samples.definitions import IMAGE_SIMPLE_SAMPLES
from pyclustering.utils import read_image, rgb2gray
def animate_segmentation(dyn_time, dyn_peripheral, image, delay_mask=100, step=5, movie_file=None):
image_source = Image.open(image)
image_size = image_source.size
figure = plt.figure()
image_pixel_fired = [-1] * (image_size[0] * image_size[1])
basic_transparence_value = 255
y_global_max = float('-Inf')
y_global_min = float('+Inf')
for dyn in dyn_peripheral:
y_max = max(dyn)
if (y_global_max < y_max):
y_global_max = y_max
y_min = min(dyn)
if (y_global_min > y_min):
y_global_min = y_min
print(y_global_min, y_global_max)
ylim = [y_global_min - abs(y_global_min) * 0.1, y_global_max + abs(y_global_max) * 0.05]
def init_frame():
return frame_generation(0)
def frame_generation(index_iteration):
print(index_iteration)
figure.clf()
figure.suptitle("Hodgkin-Huxley Network (iteration: " + str(index_iteration) +")", fontsize = 18, fontweight = 'bold')
ax1 = figure.add_subplot(121)
ax2 = figure.add_subplot(122)
end_iteration = index_iteration
if (end_iteration > len(dyn_peripheral)):
end_iteration = len(dyn_peripheral)
dynamic_length = 100
begin_iteration = end_iteration - dynamic_length
if begin_iteration < 0:
begin_iteration = 0
# Display output dynamic
xlim = [dyn_time[begin_iteration], dyn_time[begin_iteration + dynamic_length]]
visualizer = dynamic_visualizer(1, x_title="Time", y_title="V", x_lim=xlim, y_lim=ylim)
dyn_time_segment = [ dyn_time[i] for i in range(begin_iteration, end_iteration, 1) ]
dyn_peripheral_segment = [ dyn_peripheral[i] for i in range(begin_iteration, end_iteration, 1) ]
visualizer.append_dynamic(dyn_time_segment, dyn_peripheral_segment)
visualizer.show(ax1, False)
visualize_segmenetation(end_iteration, ax2, step)
return [ figure.gca() ]
def visualize_segmenetation(t, segm_axis, step):
image_result = image_source.copy()
image_cluster = None
if (t > step):
t -= step
for _ in range(step):
image_color_segments = [(255, 255, 255, 0)] * (image_size[0] * image_size[1])
for index_pixel in range(len(image_pixel_fired)):
fire_time = image_pixel_fired[index_pixel]
if ( (fire_time > 0) and (t - fire_time < delay_mask) ):
color_value = 0 + (t - fire_time)
transparence = basic_transparence_value - (t - fire_time)
if (transparence < 0):
transparence = 0
image_color_segments[index_pixel] = (color_value, color_value, color_value, transparence)
for index_oscillator in range(len(dyn_peripheral[t])):
if (dyn_peripheral[t][index_oscillator] > 0):
image_color_segments[index_oscillator] = (0, 0, 0, basic_transparence_value)
image_pixel_fired[index_oscillator] = t
stage = numpy.array(image_color_segments, numpy.uint8)
stage = numpy.reshape(stage, image_size + ((4),)) # ((3),) it's size of RGB - third dimension.
image_cluster = Image.fromarray(stage, 'RGBA')
t += 1
image_result.paste(image_cluster, (0, 0), image_cluster)
return segm_axis.imshow(image_result)
iterations = range(1, len(dyn_peripheral), step)
segmentation_animation = animation.FuncAnimation(figure, frame_generation, iterations, init_func=None, interval = 1, repeat_delay = 3000)
if (not movie_file):
segmentation_animation.save(movie_file, writer = 'ffmpeg', fps = 20, bitrate = 3000)
else:
plt.show()
def template_image_segmentation(image_file, steps, time, dynamic_file_prefix):
image = read_image(image_file);
stimulus = rgb2gray(image);
params = hhn_parameters();
params.deltah = 650;
params.w1 = 0.1;
params.w2 = 9.0;
params.w3 = 5.0;
params.threshold = -10;
stimulus = [255.0 - pixel for pixel in stimulus];
divider = max(stimulus) / 50.0;
stimulus = [int(pixel / divider) for pixel in stimulus];
t, dyn_peripheral, dyn_central = None, None, None;
if ( not os.path.exists(dynamic_file_prefix + 'dynamic_time.txt') or
not os.path.exists(dynamic_file_prefix + 'dynamic_peripheral.txt') or
not os.path.exists(dynamic_file_prefix + 'dynamic_dyn_central.txt') ):
print("File with output dynamic is not found - simulation will be performed - it may take some time, be patient.");
net = hhn_network(len(stimulus), stimulus, params, ccore=True);
(t, dyn_peripheral, dyn_central) = net.simulate(steps, time);
print("Store dynamic to save time for simulation next time.");
with open(dynamic_file_prefix + 'dynamic_time.txt', 'wb') as file_descriptor:
pickle.dump(t, file_descriptor);
with open(dynamic_file_prefix + 'dynamic_peripheral.txt', 'wb') as file_descriptor:
pickle.dump(dyn_peripheral, file_descriptor);
with open(dynamic_file_prefix + 'dynamic_dyn_central.txt', 'wb') as file_descriptor:
pickle.dump(dyn_central, file_descriptor);
else:
print("Load output dynamic from file.");
with open (dynamic_file_prefix + 'dynamic_time.txt', 'rb') as file_descriptor:
t = pickle.load(file_descriptor);
with open (dynamic_file_prefix + 'dynamic_peripheral.txt', 'rb') as file_descriptor:
dyn_peripheral = pickle.load(file_descriptor);
with open (dynamic_file_prefix + 'dynamic_dyn_central.txt', 'rb') as file_descriptor:
dyn_central = pickle.load(file_descriptor);
animate_segmentation(t, dyn_peripheral, image_file, 200);
# just for checking correctness of results - let's use classical algorithm
if (False):
dbscan_instance = dbscan(image, 3, 4, True);
dbscan_instance.process();
trustable_clusters = dbscan_instance.get_clusters();
amount_canvases = len(trustable_clusters) + 2;
visualizer = dynamic_visualizer(amount_canvases, x_title = "Time", y_title = "V", y_labels = False);
visualizer.append_dynamics(t, dyn_peripheral, 0, trustable_clusters);
visualizer.append_dynamics(t, dyn_central, amount_canvases - 2, True);
visualizer.show();
def segmentation_image_simple1():
template_image_segmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE01, 7000, 600, "simple1")
segmentation_image_simple1()
|