1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
"""!
@brief Neural Network: Local Excitatory Global Inhibitory Oscillatory Network (LEGION)
@details Implementation based on paper @cite article::legion::1, @cite article::legion::2.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import numpy
import random
import pyclustering.core.legion_wrapper as wrapper
from pyclustering.core.wrapper import ccore_library
from pyclustering.nnet import *
from pyclustering.utils import heaviside, allocate_sync_ensembles
from scipy.integrate import odeint
class legion_parameters:
"""!
@brief Describes parameters of LEGION.
@details Contained parameters affect on output dynamic of each oscillator of the network.
@see legion_network
"""
def __init__(self):
"""!
@brief Default constructor of parameters for LEGION (local excitatory global inhibitory oscillatory network).
@details Constructor initializes parameters by default non-zero values that can be
used for simple simulation.
"""
## Coefficient that affects intrinsic inhibitor of each oscillator. Should be the same as 'alpha'.
self.eps = 0.02;
## Coefficient is chosen to be on the same order of magnitude as 'eps'. Affects on exponential function that decays on a slow time scale.
self.alpha = 0.005;
## Coefficient that is used to control the ratio of the times that the solution spends in these two phases. For a larger value of g, the solution spends a shorter time in the active phase.
self.gamma = 6.0;
## Coefficient that affects on intrinsic inhibitor of each oscillator. Specifies the steepness of the sigmoid function.
self.betta = 0.1;
## Scale coefficient that is used by potential, should be greater than 0.
self.lamda = 0.1;
## Threshold that should be exceeded by a potential to switch on potential.
self.teta = 0.9;
## Threshold that should be exceeded by a single oscillator to affect its neighbors.
self.teta_x = -1.5;
## Threshold that should be exceeded to activate potential. If potential less than the threshold then potential is relaxed to 0 on time scale 'mu'.
self.teta_p = 1.5;
## Threshold that should be exceeded by any oscillator to activate global inhibitor.
self.teta_xz = 0.1;
## Threshold that should be exceeded to affect on a oscillator by the global inhibitor.
self.teta_zx = 0.1;
## Weight of permanent connections.
self.T = 2.0;
## Defines time scaling of relaxing of oscillator potential.
self.mu = 0.01;
## Weight of global inhibitory connections.
self.Wz = 1.5;
## Total dynamic weights to a single oscillator from neighbors. Sum of weights of dynamic connections to a single oscillator can not be bigger than Wt.
self.Wt = 8.0;
## Rate at which the global inhibitor reacts to the stimulation from the oscillator network.
self.fi = 3.0;
## Multiplier of oscillator noise. Plays important role in desynchronization process.
self.ro = 0.02;
## Value of external stimulus.
self.I = 0.2;
## Defines whether to use potentional of oscillator or not.
self.ENABLE_POTENTIONAL = True;
class legion_dynamic:
"""!
@brief Represents output dynamic of LEGION.
"""
@property
def output(self):
"""!
@brief Returns output dynamic of the network.
"""
if (self.__ccore_legion_dynamic_pointer is not None):
return wrapper.legion_dynamic_get_output(self.__ccore_legion_dynamic_pointer);
return self.__output;
@property
def inhibitor(self):
"""!
@brief Returns output dynamic of the global inhibitor of the network.
"""
if (self.__ccore_legion_dynamic_pointer is not None):
return wrapper.legion_dynamic_get_inhibitory_output(self.__ccore_legion_dynamic_pointer);
return self.__inhibitor;
@property
def time(self):
"""!
@brief Returns simulation time.
"""
if (self.__ccore_legion_dynamic_pointer is not None):
return wrapper.legion_dynamic_get_time(self.__ccore_legion_dynamic_pointer);
return list(range(len(self)));
def __init__(self, output, inhibitor, time, ccore = None):
"""!
@brief Constructor of legion dynamic.
@param[in] output (list): Output dynamic of the network represented by excitatory values of oscillators.
@param[in] inhibitor (list): Output dynamic of the global inhibitor of the network.
@param[in] time (list): Simulation time.
@param[in] ccore (POINTER): Pointer to CCORE legion_dynamic. If it is specified then others arguments can be omitted.
"""
self.__output = output;
self.__inhibitor = inhibitor;
self._time = time;
self.__ccore_legion_dynamic_pointer = ccore;
def __del__(self):
"""!
@brief Destructor of the dynamic of the legion network.
"""
if (self.__ccore_legion_dynamic_pointer is not None):
wrapper.legion_dynamic_destroy(self.__ccore_legion_dynamic_pointer);
def __len__(self):
"""!
@brief Returns length of output dynamic.
"""
if (self.__ccore_legion_dynamic_pointer is not None):
return wrapper.legion_dynamic_get_size(self.__ccore_legion_dynamic_pointer);
return len(self._time);
def allocate_sync_ensembles(self, tolerance = 0.1):
"""!
@brief Allocate clusters in line with ensembles of synchronous oscillators where each synchronous ensemble corresponds to only one cluster.
@param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators.
@return (list) Grours of indexes of synchronous oscillators, for example, [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ].
"""
if (self.__ccore_legion_dynamic_pointer is not None):
self.__output = wrapper.legion_dynamic_get_output(self.__ccore_legion_dynamic_pointer);
return allocate_sync_ensembles(self.__output, tolerance);
class legion_network(network):
"""!
@brief Local excitatory global inhibitory oscillatory network (LEGION) that uses relaxation oscillator
based on Van der Pol model.
@details The model uses global inhibitor to de-synchronize synchronous ensembles of oscillators.
CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
Example:
@code
# Create parameters of the network
parameters = legion_parameters();
parameters.Wt = 4.0;
# Create stimulus
stimulus = [1, 1, 0, 0, 0, 1, 1, 1];
# Create the network (use CCORE for fast solving)
net = legion_network(len(stimulus), parameters, conn_type.GRID_FOUR, ccore = True);
# Simulate network - result of simulation is output dynamic of the network
output_dynamic = net.simulate(1000, 750, stimulus);
# Draw output dynamic
draw_dynamics(output_dynamic.time, output_dynamic.output, x_title = "Time", y_title = "x(t)");
@endcode
"""
def __init__(self, num_osc, parameters = None, type_conn = conn_type.ALL_TO_ALL, type_conn_represent = conn_represent.MATRIX, ccore = True):
"""!
@brief Constructor of oscillatory network LEGION (local excitatory global inhibitory oscillatory network).
@param[in] num_osc (uint): Number of oscillators in the network.
@param[in] parameters (legion_parameters): Parameters of the network that are defined by structure 'legion_parameters'.
@param[in] type_conn (conn_type): Type of connection between oscillators in the network.
@param[in] type_conn_represent (conn_represent): Internal representation of connection in the network: matrix or list.
@param[in] ccore (bool): If True then all interaction with object will be performed via CCORE library (C++ implementation of pyclustering).
"""
self._params = None; # parameters of the network
self.__ccore_legion_pointer = None;
self._params = parameters;
# set parameters of the network
if (self._params is None):
self._params = legion_parameters();
if ( (ccore is True) and ccore_library.workable() ):
self.__ccore_legion_pointer = wrapper.legion_create(num_osc, type_conn, self._params);
else:
super().__init__(num_osc, type_conn, type_conn_represent);
# initial states
self._excitatory = [ random.random() for _ in range(self._num_osc) ];
self._inhibitory = [0.0] * self._num_osc;
self._potential = [0.0] * self._num_osc;
self._coupling_term = None; # coupling term of each oscillator
self._global_inhibitor = 0; # value of global inhibitory
self._stimulus = None; # stimulus of each oscillator
self._dynamic_coupling = None; # dynamic connection between oscillators
self._coupling_term = [0.0] * self._num_osc;
self._buffer_coupling_term = [0.0] * self._num_osc;
# generate first noises
self._noise = [random.random() * self._params.ro for i in range(self._num_osc)];
def __del__(self):
"""!
@brief Default destructor of LEGION.
"""
if (self.__ccore_legion_pointer is not None):
wrapper.legion_destroy(self.__ccore_legion_pointer);
self.__ccore_legion_pointer = None;
def __len__(self):
"""!
@brief (uint) Returns size of LEGION.
"""
if (self.__ccore_legion_pointer is not None):
return wrapper.legion_get_size(self.__ccore_legion_pointer);
return self._num_osc;
def __create_stimulus(self, stimulus):
"""!
@brief Create stimulus for oscillators in line with stimulus map and parameters.
@param[in] stimulus (list): Stimulus for oscillators that is represented by list, number of stimulus should be equal number of oscillators.
"""
if (len(stimulus) != self._num_osc):
raise NameError("Number of stimulus should be equal number of oscillators in the network.");
else:
self._stimulus = [];
for val in stimulus:
if (val > 0): self._stimulus.append(self._params.I);
else: self._stimulus.append(0);
def __create_dynamic_connections(self):
"""!
@brief Create dynamic connection in line with input stimulus.
"""
if self._stimulus is None:
raise NameError("Stimulus should initialed before creation of the dynamic connections in the network.");
self._dynamic_coupling = [ [0] * self._num_osc for i in range(self._num_osc)];
for i in range(self._num_osc):
neighbors = self.get_neighbors(i)
if (len(neighbors) > 0) and (self._stimulus[i] > 0):
number_stimulated_neighbors = 0.0
for j in neighbors:
if self._stimulus[j] > 0:
number_stimulated_neighbors += 1.0
if (number_stimulated_neighbors > 0):
dynamic_weight = self._params.Wt / number_stimulated_neighbors
for j in neighbors:
self._dynamic_coupling[i][j] = dynamic_weight
def simulate(self, steps, time, stimulus, solution=solve_type.RK4, collect_dynamic=True):
"""!
@brief Performs static simulation of LEGION oscillatory network.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] time (double): Time of simulation.
@param[in] stimulus (list): Stimulus for oscillators, number of stimulus should be equal to number of oscillators,
example of stimulus for 5 oscillators [0, 0, 1, 1, 0], value of stimulus is defined by parameter 'I'.
@param[in] solution (solve_type): Method that is used for differential equation.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
"""
if self.__ccore_legion_pointer is not None:
pointer_dynamic = wrapper.legion_simulate(self.__ccore_legion_pointer, steps, time, solution, collect_dynamic, stimulus)
return legion_dynamic(None, None, None, pointer_dynamic)
# Check solver before simulation
if solution == solve_type.FAST:
raise NameError("Solver FAST is not support due to low accuracy that leads to huge error.")
elif solution == solve_type.RKF45:
raise NameError("Solver RKF45 is not support in python version. RKF45 is supported in CCORE implementation.")
# set stimulus
self.__create_stimulus(stimulus)
# calculate dynamic weights
self.__create_dynamic_connections()
dyn_exc = None
dyn_time = None
dyn_ginh = None
# Store only excitatory of the oscillator
if collect_dynamic is True:
dyn_exc = []
dyn_time = []
dyn_ginh = []
step = time / steps
int_step = step / 10.0
for t in numpy.arange(step, time + step, step):
# update states of oscillators
self._calculate_states(solution, t, step, int_step)
# update states of oscillators
if collect_dynamic is True:
dyn_exc.append(self._excitatory)
dyn_time.append(t)
dyn_ginh.append(self._global_inhibitor)
else:
dyn_exc = self._excitatory
dyn_time = t
dyn_ginh = self._global_inhibitor
return legion_dynamic(dyn_exc, dyn_ginh, dyn_time);
def _calculate_states(self, solution, t, step, int_step):
"""!
@brief Calculates new state of each oscillator in the network.
@param[in] solution (solve_type): Type solver of the differential equation.
@param[in] t (double): Current time of simulation.
@param[in] step (double): Step of solution at the end of which states of oscillators should be calculated.
@param[in] int_step (double): Step differentiation that is used for solving differential equation.
"""
next_excitatory = [0.0] * self._num_osc;
next_inhibitory = [0.0] * self._num_osc;
next_potential = [];
if (self._params.ENABLE_POTENTIONAL is True):
next_potential = [0.0] * self._num_osc;
# Update states of oscillators
for index in range (0, self._num_osc, 1):
if (self._params.ENABLE_POTENTIONAL is True):
result = odeint(self._legion_state, [self._excitatory[index], self._inhibitory[index], self._potential[index]], numpy.arange(t - step, t, int_step), (index , ));
[ next_excitatory[index], next_inhibitory[index], next_potential[index] ] = result[len(result) - 1][0:3];
else:
result = odeint(self._legion_state_simplify, [self._excitatory[index], self._inhibitory[index] ], numpy.arange(t - step, t, int_step), (index , ));
[ next_excitatory[index], next_inhibitory[index] ] = result[len(result) - 1][0:2];
# Update coupling term
neighbors = self.get_neighbors(index);
coupling = 0
for index_neighbor in neighbors:
coupling += self._dynamic_coupling[index][index_neighbor] * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
self._buffer_coupling_term[index] = coupling - self._params.Wz * heaviside(self._global_inhibitor - self._params.teta_xz);
# Update state of global inhibitory
result = odeint(self._global_inhibitor_state, self._global_inhibitor, numpy.arange(t - step, t, int_step), (None, ));
self._global_inhibitor = result[len(result) - 1][0];
self._noise = [random.random() * self._params.ro for i in range(self._num_osc)];
self._coupling_term = self._buffer_coupling_term[:];
self._inhibitory = next_inhibitory[:];
self._excitatory = next_excitatory[:];
if (self._params.ENABLE_POTENTIONAL is True):
self._potential = next_potential[:];
def _global_inhibitor_state(self, z, t, argv):
"""!
@brief Returns new value of global inhibitory
@param[in] z (dobule): Current value of inhibitory.
@param[in] t (double): Current time of simulation.
@param[in] argv (tuple): It's not used, can be ignored.
@return (double) New value if global inhibitory (not assign).
"""
sigma = 0.0;
for x in self._excitatory:
if (x > self._params.teta_zx):
sigma = 1.0;
break;
return self._params.fi * (sigma - z);
def _legion_state_simplify(self, inputs, t, argv):
"""!
@brief Returns new values of excitatory and inhibitory parts of oscillator of oscillator.
@details Simplify model doesn't consider oscillator potential.
@param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory].
@param[in] t (double): Current time of simulation.
@param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
@return (list) New values of excitatoty and inhibitory part of oscillator (not assign).
"""
index = argv;
x = inputs[0]; # excitatory
y = inputs[1]; # inhibitory
dx = 3.0 * x - x ** 3.0 + 2.0 - y + self._stimulus[index] + self._coupling_term[index] + self._noise[index];
dy = self._params.eps * (self._params.gamma * (1.0 + math.tanh(x / self._params.betta)) - y);
neighbors = self.get_neighbors(index);
potential = 0.0;
for index_neighbor in neighbors:
potential += self._params.T * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
return [dx, dy];
def _legion_state(self, inputs, t, argv):
"""!
@brief Returns new values of excitatory and inhibitory parts of oscillator and potential of oscillator.
@param[in] inputs (list): Initial values (current) of oscillator [excitatory, inhibitory, potential].
@param[in] t (double): Current time of simulation.
@param[in] argv (uint): Extra arguments that are not used for integration - index of oscillator.
@return (list) New values of excitatoty and inhibitory part of oscillator and new value of potential (not assign).
"""
index = argv;
x = inputs[0]; # excitatory
y = inputs[1]; # inhibitory
p = inputs[2]; # potential
potential_influence = heaviside(p + math.exp(-self._params.alpha * t) - self._params.teta);
dx = 3.0 * x - x ** 3.0 + 2.0 - y + self._stimulus[index] * potential_influence + self._coupling_term[index] + self._noise[index];
dy = self._params.eps * (self._params.gamma * (1.0 + math.tanh(x / self._params.betta)) - y);
neighbors = self.get_neighbors(index);
potential = 0.0;
for index_neighbor in neighbors:
potential += self._params.T * heaviside(self._excitatory[index_neighbor] - self._params.teta_x);
dp = self._params.lamda * (1.0 - p) * heaviside(potential - self._params.teta_p) - self._params.mu * p;
return [dx, dy, dp];
|