1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
"""!
@brief Neural Network: Pulse Coupled Neural Network
@details Implementation based on paper @cite book::image_processing_using_pcnn.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import random
import numpy
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from PIL import Image
from pyclustering.nnet import *
from pyclustering.core.wrapper import ccore_library
import pyclustering.core.pcnn_wrapper as wrapper
from pyclustering.utils import draw_dynamics
class pcnn_parameters:
"""!
@brief Parameters for pulse coupled neural network.
"""
def __init__(self):
"""!
@brief Default constructor of parameters for pulse-coupled neural network.
@details Constructor initializes parameters by default non-zero values that can be
used for simple simulation.
"""
## Multiplier for the feeding compartment at the current step.
self.VF = 1.0
## Multiplier for the linking compartment at the current step.
self.VL = 1.0
## Multiplier for the threshold at the current step.
self.VT = 10.0
## Multiplier for the feeding compartment at the previous step.
self.AF = 0.1
## Multiplier for the linking compartment at the previous step.
self.AL = 0.1
## Multiplier for the threshold at the previous step.
self.AT = 0.5
## Synaptic weight - neighbours influence on linking compartment.
self.W = 1.0
## Synaptic weight - neighbours influence on feeding compartment.
self.M = 1.0
## Linking strength in the network.
self.B = 0.1
## Enable/disable Fast-Linking mode. Fast linking helps to overcome some of the effects of time quantisation. This process allows the linking wave to progress a lot faster than the feeding wave.
self.FAST_LINKING = False
class pcnn_dynamic:
"""!
@brief Represents output dynamic of PCNN (pulse-coupled neural network).
"""
@property
def output(self):
"""!
@brief (list) Returns oscillato outputs during simulation.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_get_output(self.__ccore_pcnn_dynamic_pointer)
return self.__dynamic
@property
def time(self):
"""!
@brief (list) Returns sampling times when dynamic is measured during simulation.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_get_time(self.__ccore_pcnn_dynamic_pointer)
return list(range(len(self)))
def __init__(self, dynamic, ccore=None):
"""!
@brief Constructor of PCNN dynamic.
@param[in] dynamic (list): Dynamic of oscillators on each step of simulation. If ccore pointer is specified than it can be ignored.
@param[in] ccore (ctypes.pointer): Pointer to CCORE pcnn_dynamic instance in memory.
"""
self.__OUTPUT_TRUE = 1 # fire value for oscillators.
self.__OUTPUT_FALSE = 0 # rest value for oscillators.
self.__dynamic = dynamic
self.__ccore_pcnn_dynamic_pointer = ccore
def __del__(self):
"""!
@brief Default destructor of PCNN dynamic.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
wrapper.pcnn_dynamic_destroy(self.__ccore_pcnn_dynamic_pointer)
def __len__(self):
"""!
@brief (uint) Returns number of simulation steps that are stored in dynamic.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_get_size(self.__ccore_pcnn_dynamic_pointer)
return len(self.__dynamic)
def allocate_sync_ensembles(self):
"""!
@brief Allocate clusters in line with ensembles of synchronous oscillators where each
synchronous ensemble corresponds to only one cluster.
@return (list) Grours (lists) of indexes of synchronous oscillators.
For example, [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ].
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_allocate_sync_ensembles(self.__ccore_pcnn_dynamic_pointer)
sync_ensembles = []
traverse_oscillators = set()
number_oscillators = len(self.__dynamic[0])
for t in range(len(self.__dynamic) - 1, 0, -1):
sync_ensemble = []
for i in range(number_oscillators):
if self.__dynamic[t][i] == self.__OUTPUT_TRUE:
if i not in traverse_oscillators:
sync_ensemble.append(i)
traverse_oscillators.add(i)
if sync_ensemble != []:
sync_ensembles.append(sync_ensemble)
return sync_ensembles
def allocate_spike_ensembles(self):
"""!
@brief Analyses output dynamic of network and allocates spikes on each iteration as a list of indexes of oscillators.
@details Each allocated spike ensemble represents list of indexes of oscillators whose output is active.
@return (list) Spike ensembles of oscillators.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_allocate_spike_ensembles(self.__ccore_pcnn_dynamic_pointer)
spike_ensembles = []
number_oscillators = len(self.__dynamic[0])
for t in range(len(self.__dynamic)):
spike_ensemble = []
for index in range(number_oscillators):
if self.__dynamic[t][index] == self.__OUTPUT_TRUE:
spike_ensemble.append(index)
if len(spike_ensemble) > 0:
spike_ensembles.append(spike_ensemble)
return spike_ensembles
def allocate_time_signal(self):
"""!
@brief Analyses output dynamic and calculates time signal (signal vector information) of network output.
@return (list) Time signal of network output.
"""
if self.__ccore_pcnn_dynamic_pointer is not None:
return wrapper.pcnn_dynamic_allocate_time_signal(self.__ccore_pcnn_dynamic_pointer)
signal_vector_information = []
for t in range(0, len(self.__dynamic)):
signal_vector_information.append(sum(self.__dynamic[t]))
return signal_vector_information
class pcnn_visualizer:
"""!
@brief Visualizer of output dynamic of pulse-coupled neural network (PCNN).
"""
@staticmethod
def show_time_signal(pcnn_output_dynamic):
"""!
@brief Shows time signal (signal vector information) using network dynamic during simulation.
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
"""
time_signal = pcnn_output_dynamic.allocate_time_signal()
time_axis = range(len(time_signal))
plt.subplot(1, 1, 1)
plt.plot(time_axis, time_signal, '-')
plt.ylabel("G (time signal)")
plt.xlabel("t (iteration)")
plt.grid(True)
plt.show()
@staticmethod
def show_output_dynamic(pcnn_output_dynamic, separate_representation = False):
"""!
@brief Shows output dynamic (output of each oscillator) during simulation.
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
@param[in] separate_representation (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage.
"""
draw_dynamics(pcnn_output_dynamic.time, pcnn_output_dynamic.output, x_title = "t", y_title = "y(t)", separate = separate_representation)
@staticmethod
def animate_spike_ensembles(pcnn_output_dynamic, image_size):
"""!
@brief Shows animation of output dynamic (output of each oscillator) during simulation.
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
@param[in] image_size (tuple): Image size represented as (height, width).
"""
figure = plt.figure()
time_signal = pcnn_output_dynamic.allocate_time_signal()
spike_ensembles = pcnn_output_dynamic.allocate_spike_ensembles()
spike_animation = []
ensemble_index = 0
for t in range(len(time_signal)):
image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1])
if time_signal[t] > 0:
for index_pixel in spike_ensembles[ensemble_index]:
image_color_segments[index_pixel] = (0, 0, 0)
ensemble_index += 1
stage = numpy.array(image_color_segments, numpy.uint8)
stage = numpy.reshape(stage, image_size + ((3),)) # ((3),) it's size of RGB - third dimension.
image_cluster = Image.fromarray(stage, 'RGB')
spike_animation.append( [ plt.imshow(image_cluster, interpolation='none') ] )
im_ani = animation.ArtistAnimation(figure, spike_animation, interval=75, repeat_delay=3000, blit=True)
plt.show()
class pcnn_network(network):
"""!
@brief Model of oscillatory network that is based on the Eckhorn model.
@details CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
Here is an example how to perform PCNN simulation:
@code
from pyclustering.nnet.pcnn import pcnn_network, pcnn_visualizer
# Create Pulse-Coupled neural network with 10 oscillators.
net = pcnn_network(10)
# Perform simulation during 100 steps using binary external stimulus.
dynamic = net.simulate(50, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
# Allocate synchronous ensembles from the output dynamic.
ensembles = dynamic.allocate_sync_ensembles()
# Show output dynamic.
pcnn_visualizer.show_output_dynamic(dynamic, ensembles)
@endcode
"""
__OUTPUT_TRUE = 1 # fire value for oscillators.
__OUTPUT_FALSE = 0 # rest value for oscillators.
def __init__(self, num_osc, parameters=None, type_conn=conn_type.ALL_TO_ALL, type_conn_represent=conn_represent.MATRIX, height=None, width=None, ccore=True):
"""!
@brief Constructor of oscillatory network is based on Kuramoto model.
@param[in] num_osc (uint): Number of oscillators in the network.
@param[in] parameters (pcnn_parameters): Parameters of the network.
@param[in] type_conn (conn_type): Type of connection between oscillators in the network (all-to-all, grid, bidirectional list, etc.).
@param[in] type_conn_represent (conn_represent): Internal representation of connection in the network: matrix or list.
@param[in] height (uint): Number of oscillators in column of the network, this argument is used
only for network with grid structure (GRID_FOUR, GRID_EIGHT), for other types this argument is ignored.
@param[in] width (uint): Number of oscillotors in row of the network, this argument is used only
for network with grid structure (GRID_FOUR, GRID_EIGHT), for other types this argument is ignored.
@param[in] ccore (bool): If True then all interaction with object will be performed via CCORE library (C++ implementation of pyclustering).
"""
self._outputs = None # list of outputs of oscillators.
self._feeding = None # feeding compartment of each oscillator.
self._linking = None # linking compartment of each oscillator.
self._threshold = None # threshold of each oscillator.
self._params = None
self.__ccore_pcnn_pointer = None
# set parameters of the network
if parameters is not None:
self._params = parameters
else:
self._params = pcnn_parameters()
if (ccore is True) and ccore_library.workable():
network_height = height
network_width = width
if (type_conn == conn_type.GRID_FOUR) or (type_conn == conn_type.GRID_EIGHT):
if (network_height is None) or (network_width is None):
side_size = num_osc ** (0.5)
if side_size - math.floor(side_size) > 0:
raise NameError('Invalid number of oscillators in the network in case of grid structure')
network_height = int(side_size)
network_width = int(side_size)
else:
network_height = 0
network_width = 0
self.__ccore_pcnn_pointer = wrapper.pcnn_create(num_osc, type_conn, network_height, network_width, self._params)
else:
super().__init__(num_osc, type_conn, type_conn_represent, height, width)
self._outputs = [0.0] * self._num_osc
self._feeding = [0.0] * self._num_osc
self._linking = [0.0] * self._num_osc
self._threshold = [ random.random() for i in range(self._num_osc) ]
def __del__(self):
"""!
@brief Default destructor of PCNN.
"""
if self.__ccore_pcnn_pointer is not None:
wrapper.pcnn_destroy(self.__ccore_pcnn_pointer)
self.__ccore_pcnn_pointer = None
def __len__(self):
"""!
@brief (uint) Returns size of oscillatory network.
"""
if self.__ccore_pcnn_pointer is not None:
return wrapper.pcnn_get_size(self.__ccore_pcnn_pointer)
return self._num_osc
def simulate(self, steps, stimulus):
"""!
@brief Performs static simulation of pulse coupled neural network using.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] stimulus (list): Stimulus for oscillators, number of stimulus should be equal to number of oscillators.
@return (pcnn_dynamic) Dynamic of oscillatory network - output of each oscillator on each step of simulation.
"""
if len(stimulus) != len(self):
raise NameError('Number of stimulus should be equal to number of oscillators. Each stimulus corresponds to only one oscillators.')
if self.__ccore_pcnn_pointer is not None:
ccore_instance_dynamic = wrapper.pcnn_simulate(self.__ccore_pcnn_pointer, steps, stimulus)
return pcnn_dynamic(None, ccore_instance_dynamic)
dynamic = []
dynamic.append(self._outputs)
for step in range(1, steps, 1):
self._outputs = self._calculate_states(stimulus)
dynamic.append(self._outputs)
return pcnn_dynamic(dynamic)
def _calculate_states(self, stimulus):
"""!
@brief Calculates states of oscillators in the network for current step and stored them except outputs of oscillators.
@param[in] stimulus (list): Stimulus for oscillators, number of stimulus should be equal to number of oscillators.
@return (list) New outputs for oscillators (do not stored it).
"""
feeding = [0.0] * self._num_osc
linking = [0.0] * self._num_osc
outputs = [0.0] * self._num_osc
threshold = [0.0] * self._num_osc
for index in range(0, self._num_osc, 1):
neighbors = self.get_neighbors(index)
feeding_influence = 0.0
linking_influence = 0.0
for index_neighbour in neighbors:
feeding_influence += self._outputs[index_neighbour] * self._params.M
linking_influence += self._outputs[index_neighbour] * self._params.W
feeding_influence *= self._params.VF
linking_influence *= self._params.VL
feeding[index] = self._params.AF * self._feeding[index] + stimulus[index] + feeding_influence
linking[index] = self._params.AL * self._linking[index] + linking_influence
# calculate internal activity
internal_activity = feeding[index] * (1.0 + self._params.B * linking[index])
# calculate output of the oscillator
if internal_activity > self._threshold[index]:
outputs[index] = self.__OUTPUT_TRUE
else:
outputs[index] = self.__OUTPUT_FALSE
# In case of Fast Linking we should calculate threshold until output is changed.
if self._params.FAST_LINKING is not True:
threshold[index] = self._params.AT * self._threshold[index] + self._params.VT * outputs[index]
# In case of Fast Linking we need to wait until output is changed.
if self._params.FAST_LINKING is True:
output_change = True # Set it True for the for the first iteration.
previous_outputs = outputs[:]
while output_change is True:
current_output_change = False
for index in range(0, self._num_osc, 1):
linking_influence = 0.0
neighbors = self.get_neighbors(index)
for index_neighbour in neighbors:
linking_influence += previous_outputs[index_neighbour] * self._params.W
linking_influence *= self._params.VL
linking[index] = linking_influence
internal_activity = feeding[index] * (1.0 + self._params.B * linking[index])
# calculate output of the oscillator
if internal_activity > self._threshold[index]:
outputs[index] = self.__OUTPUT_TRUE
else:
outputs[index] = self.__OUTPUT_FALSE
current_output_change |= (outputs[index] != previous_outputs[index])
output_change = current_output_change
if output_change is True:
previous_outputs = outputs[:]
# In case of Fast Linking threshold should be calculated after fast linking.
if self._params.FAST_LINKING is True:
for index in range(0, self._num_osc, 1):
threshold[index] = self._params.AT * self._threshold[index] + self._params.VT * outputs[index]
self._feeding = feeding[:]
self._linking = linking[:]
self._threshold = threshold[:]
return outputs
|