1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
|
"""!
@brief Neural Network: Oscillatory Neural Network based on Kuramoto model
@details Implementation based on paper @cite article::syncnet::1, @cite article::nnet::sync::1, @cite inproceedings::net::sync::1.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import math
import numpy
import random
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import pyclustering.core.sync_wrapper as wrapper
from pyclustering.core.wrapper import ccore_library
from scipy.integrate import odeint
from pyclustering.nnet import network, conn_represent, conn_type, initial_type, solve_type
from pyclustering.utils import pi, draw_dynamics, draw_dynamics_set, set_ax_param
class order_estimator:
"""!
@brief Provides services to calculate order parameter and local order parameter that are used
for synchronization level estimation.
"""
@staticmethod
def calculate_sync_order(oscillator_phases):
"""!
@brief Calculates level of global synchronization (order parameter) for input phases.
@details This parameter is tend 1.0 when the oscillatory network close to global synchronization and it tend to 0.0 when
desynchronization is observed in the network.
@param[in] oscillator_phases (list): List of oscillator phases that are used for level of global synchronization.
@return (double) Level of global synchronization (order parameter).
@see calculate_order_parameter()
"""
exp_amount = 0.0
average_phase = 0.0
for phase in oscillator_phases:
exp_amount += math.expm1(abs(1j * phase))
average_phase += phase
exp_amount /= len(oscillator_phases)
average_phase = math.expm1(abs(1j * (average_phase / len(oscillator_phases))))
return abs(average_phase) / abs(exp_amount)
@staticmethod
def calculate_local_sync_order(oscillator_phases, oscillatory_network):
"""!
@brief Calculates level of local synchorization (local order parameter) for input phases for the specified network.
@details This parameter is tend 1.0 when the oscillatory network close to local synchronization and it tend to 0.0 when
desynchronization is observed in the network.
@param[in] oscillator_phases (list): List of oscillator phases that are used for level of local (partial) synchronization.
@param[in] oscillatory_network (sync): Instance of oscillatory network whose connections are required for calculation.
@return (double) Level of local synchronization (local order parameter).
"""
exp_amount = 0.0
num_neigh = 0.0
for i in range(0, len(oscillatory_network), 1):
for j in range(0, len(oscillatory_network), 1):
if oscillatory_network.has_connection(i, j) is True:
exp_amount += math.exp(-abs(oscillator_phases[j] - oscillator_phases[i]))
num_neigh += 1.0
if num_neigh == 0:
num_neigh = 1.0
return exp_amount / num_neigh
class sync_dynamic:
"""!
@brief Represents output dynamic of Sync.
"""
@property
def output(self):
"""!
@brief (list) Returns output dynamic of the Sync network (phase coordinates of each oscillator in the network) during simulation.
"""
if (self._ccore_sync_dynamic_pointer is not None) and ((self._dynamic is None) or (len(self._dynamic) == 0)):
self._dynamic = wrapper.sync_dynamic_get_output(self._ccore_sync_dynamic_pointer)
return self._dynamic
@property
def time(self):
"""!
@brief (list) Returns sampling times when dynamic is measured during simulation.
"""
if (self._ccore_sync_dynamic_pointer is not None) and ((self._time is None) or (len(self._time) == 0)):
self._time = wrapper.sync_dynamic_get_time(self._ccore_sync_dynamic_pointer)
return self._time
def __init__(self, phase, time, ccore=None):
"""!
@brief Constructor of Sync dynamic.
@param[in] phase (list): Dynamic of oscillators on each step of simulation. If ccore pointer is specified than it can be ignored.
@param[in] time (list): Simulation time.
@param[in] ccore (ctypes.pointer): Pointer to CCORE sync_dynamic instance in memory.
"""
self._dynamic = phase
self._time = time
self._ccore_sync_dynamic_pointer = ccore
def __del__(self):
"""!
@brief Default destructor of Sync dynamic.
"""
if self._ccore_sync_dynamic_pointer is not None:
wrapper.sync_dynamic_destroy(self._ccore_sync_dynamic_pointer)
def __len__(self):
"""!
@brief Returns number of simulation steps that are stored in dynamic.
@return (uint) Number of simulation steps that are stored in dynamic.
"""
if (self._ccore_sync_dynamic_pointer is not None):
return wrapper.sync_dynamic_get_size(self._ccore_sync_dynamic_pointer)
return len(self._dynamic)
def __getitem__(self, index):
"""!
@brief Indexing of the dynamic.
"""
if index == 0:
return self.time
elif index == 1:
return self.output
else:
raise NameError('Out of range ' + index + ': only indexes 0 and 1 are supported.')
def allocate_sync_ensembles(self, tolerance = 0.01, indexes = None, iteration = None):
"""!
@brief Allocate clusters in line with ensembles of synchronous oscillators where each synchronous ensemble corresponds to only one cluster.
@param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators.
@param[in] indexes (list): List of real object indexes and it should be equal to amount of oscillators (in case of 'None' - indexes are in range [0; amount_oscillators]).
@param[in] iteration (uint): Iteration of simulation that should be used for allocation.
@return (list) Groups (lists) of indexes of synchronous oscillators.
For example [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ].
"""
if self._ccore_sync_dynamic_pointer is not None:
ensembles = wrapper.sync_dynamic_allocate_sync_ensembles(self._ccore_sync_dynamic_pointer, tolerance, iteration)
if indexes is not None:
for ensemble in ensembles:
for index in range(len(ensemble)):
ensemble[index] = indexes[ensemble[index]]
return ensembles
if (self._dynamic is None) or (len(self._dynamic) == 0):
return []
number_oscillators = len(self._dynamic[0])
last_state = None
if iteration is None:
last_state = self._dynamic[len(self._dynamic) - 1]
else:
last_state = self._dynamic[iteration]
clusters = []
if number_oscillators > 0:
clusters.append([0])
for i in range(1, number_oscillators, 1):
cluster_allocated = False
for cluster in clusters:
for neuron_index in cluster:
last_state_shifted = abs(last_state[i] - 2 * pi)
if ( ( (last_state[i] < (last_state[neuron_index] + tolerance)) and (last_state[i] > (last_state[neuron_index] - tolerance)) ) or
( (last_state_shifted < (last_state[neuron_index] + tolerance)) and (last_state_shifted > (last_state[neuron_index] - tolerance)) ) ):
cluster_allocated = True
real_index = i
if indexes is not None:
real_index = indexes[i]
cluster.append(real_index)
break
if cluster_allocated is True:
break
if cluster_allocated is False:
clusters.append([i])
return clusters
def allocate_phase_matrix(self, grid_width = None, grid_height = None, iteration = None):
"""!
@brief Returns 2D matrix of phase values of oscillators at the specified iteration of simulation.
@details User should ensure correct matrix sizes in line with following expression grid_width x grid_height that should be equal to
amount of oscillators otherwise exception is thrown. If grid_width or grid_height are not specified than phase matrix size
will by calculated automatically by square root.
@param[in] grid_width (uint): Width of the allocated matrix.
@param[in] grid_height (uint): Height of the allocated matrix.
@param[in] iteration (uint): Number of iteration of simulation for which correlation matrix should be allocated.
If iternation number is not specified, the last step of simulation is used for the matrix allocation.
@return (list) Phase value matrix of oscillators with size [number_oscillators x number_oscillators].
"""
output_dynamic = self.output
if (output_dynamic is None) or (len(output_dynamic) == 0):
return []
current_dynamic = output_dynamic[len(output_dynamic) - 1]
if iteration is not None:
current_dynamic = output_dynamic[iteration]
width_matrix = grid_width
height_matrix = grid_height
number_oscillators = len(current_dynamic)
if (width_matrix is None) or (height_matrix is None):
width_matrix = int(math.ceil(math.sqrt(number_oscillators)))
height_matrix = width_matrix
if (number_oscillators != width_matrix * height_matrix):
raise NameError("Impossible to allocate phase matrix with specified sizes, amout of neurons should be equal to grid_width * grid_height.");
phase_matrix = [[0.0 for _ in range(width_matrix)] for _ in range(height_matrix)]
for i in range(height_matrix):
for j in range(width_matrix):
phase_matrix[i][j] = current_dynamic[j + i * width_matrix]
return phase_matrix
def allocate_correlation_matrix(self, iteration = None):
"""!
@brief Allocate correlation matrix between oscillators at the specified step of simulation.
@param[in] iteration (uint): Number of iteration of simulation for which correlation matrix should be allocated.
If iternation number is not specified, the last step of simulation is used for the matrix allocation.
@return (list) Correlation matrix between oscillators with size [number_oscillators x number_oscillators].
"""
if self._ccore_sync_dynamic_pointer is not None:
return wrapper.sync_dynamic_allocate_correlation_matrix(self._ccore_sync_dynamic_pointer, iteration)
if (self._dynamic is None) or (len(self._dynamic) == 0):
return []
dynamic = self._dynamic
current_dynamic = dynamic[len(dynamic) - 1]
if iteration is not None:
current_dynamic = dynamic[iteration]
number_oscillators = len(dynamic[0])
affinity_matrix = [[0.0 for i in range(number_oscillators)] for j in range(number_oscillators)]
for i in range(number_oscillators):
for j in range(number_oscillators):
phase1 = current_dynamic[i]
phase2 = current_dynamic[j]
affinity_matrix[i][j] = abs(math.sin(phase1 - phase2))
return affinity_matrix
def calculate_order_parameter(self, start_iteration=None, stop_iteration=None):
"""!
@brief Calculates level of global synchorization (order parameter).
@details This parameter is tend 1.0 when the oscillatory network close to global synchronization and it tend to 0.0 when
desynchronization is observed in the network. Order parameter is calculated using following equation:
\f[
r_{c}=\frac{1}{Ne^{i\varphi }}\sum_{j=0}^{N}e^{i\theta_{j}};
\f]
where \f$\varphi\f$ is a average phase coordinate in the network, \f$N\f$ is an amount of oscillators in the network.
@param[in] start_iteration (uint): The first iteration that is used for calculation, if 'None' then the last iteration is used.
@param[in] stop_iteration (uint): The last iteration that is used for calculation, if 'None' then 'start_iteration' + 1 is used.
Example:
@code
oscillatory_network = sync(16, type_conn = conn_type.ALL_TO_ALL);
output_dynamic = oscillatory_network.simulate_static(100, 10);
print("Order parameter at the last step: ", output_dynamic.calculate_order_parameter());
print("Order parameter at the first step:", output_dynamic.calculate_order_parameter(0));
print("Order parameter evolution between 40 and 50 steps:", output_dynamic.calculate_order_parameter(40, 50));
@endcode
@return (list) List of levels of global synchronization (order parameter evolution).
@see order_estimator
"""
(start_iteration, stop_iteration) = self.__get_start_stop_iterations(start_iteration, stop_iteration)
if self._ccore_sync_dynamic_pointer is not None:
return wrapper.sync_dynamic_calculate_order(self._ccore_sync_dynamic_pointer, start_iteration, stop_iteration)
sequence_order = []
for index in range(start_iteration, stop_iteration):
sequence_order.append(order_estimator.calculate_sync_order(self.output[index]))
return sequence_order
def calculate_local_order_parameter(self, oscillatory_network, start_iteration = None, stop_iteration = None):
"""!
@brief Calculates local order parameter.
@details Local order parameter or so-called level of local or partial synchronization is calculated by following expression:
\f[
r_{c}=\left | \sum_{i=0}^{N} \frac{1}{N_{i}} \sum_{j=0}e^{ \theta_{j} - \theta_{i} } \right |;
\f]
where N - total amount of oscillators in the network and \f$N_{i}\f$ - amount of neighbors of oscillator with index \f$i\f$.
@param[in] oscillatory_network (sync): Sync oscillatory network whose structure of connections is required for calculation.
@param[in] start_iteration (uint): The first iteration that is used for calculation, if 'None' then the last iteration is used.
@param[in] stop_iteration (uint): The last iteration that is used for calculation, if 'None' then 'start_iteration' + 1 is used.
@return (list) List of levels of local (partial) synchronization (local order parameter evolution).
"""
(start_iteration, stop_iteration) = self.__get_start_stop_iterations(start_iteration, stop_iteration)
if self._ccore_sync_dynamic_pointer is not None:
network_pointer = oscillatory_network._ccore_network_pointer
return wrapper.sync_dynamic_calculate_local_order(self._ccore_sync_dynamic_pointer, network_pointer, start_iteration, stop_iteration)
sequence_local_order = []
for index in range(start_iteration, stop_iteration):
sequence_local_order.append(order_estimator.calculate_local_sync_order(self.output[index], oscillatory_network))
return sequence_local_order
def __get_start_stop_iterations(self, start_iteration, stop_iteration):
"""!
@brief Aplly rules for start_iteration and stop_iteration parameters.
@param[in] start_iteration (uint): The first iteration that is used for calculation.
@param[in] stop_iteration (uint): The last iteration that is used for calculation.
@return (tuple) New the first iteration and the last.
"""
if start_iteration is None:
start_iteration = len(self) - 1
if stop_iteration is None:
stop_iteration = start_iteration + 1
return start_iteration, stop_iteration
class sync_visualizer:
"""!
@brief Visualizer of output dynamic of sync network (Sync).
"""
@staticmethod
def show_output_dynamic(sync_output_dynamic):
"""!
@brief Shows output dynamic (output of each oscillator) during simulation.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@see show_output_dynamics
"""
draw_dynamics(sync_output_dynamic.time, sync_output_dynamic.output, x_title="t", y_title="phase", y_lim=[0, 2 * 3.14])
@staticmethod
def show_output_dynamics(sync_output_dynamics):
"""!
@brief Shows several output dynamics (output of each oscillator) during simulation.
@details Each dynamic is presented on separate plot.
@param[in] sync_output_dynamics (list): list of output dynamics 'sync_dynamic' of the Sync network.
@see show_output_dynamic
"""
draw_dynamics_set(sync_output_dynamics, "t", "phase", None, [0, 2 * 3.14], False, False)
@staticmethod
def show_correlation_matrix(sync_output_dynamic, iteration=None):
"""!
@brief Shows correlation matrix between oscillators at the specified iteration.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] iteration (uint): Number of iteration of simulation for which correlation matrix should be
allocated. If iteration number is not specified, the last step of simulation is used for the matrix
allocation.
"""
_ = plt.figure()
correlation_matrix = sync_output_dynamic.allocate_correlation_matrix(iteration)
plt.imshow(correlation_matrix, cmap = plt.get_cmap('cool'), interpolation='kaiser', vmin=0.0, vmax=1.0)
plt.show()
@staticmethod
def show_phase_matrix(sync_output_dynamic, grid_width=None, grid_height=None, iteration=None):
"""!
@brief Shows 2D matrix of phase values of oscillators at the specified iteration.
@details User should ensure correct matrix sizes in line with following expression grid_width x grid_height that should be equal to
amount of oscillators otherwise exception is thrown. If grid_width or grid_height are not specified than phase matrix size
will by calculated automatically by square root.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network whose phase matrix should be shown.
@param[in] grid_width (uint): Width of the phase matrix.
@param[in] grid_height (uint): Height of the phase matrix.
@param[in] iteration (uint): Number of iteration of simulation for which correlation matrix should be allocated.
If iternation number is not specified, the last step of simulation is used for the matrix allocation.
"""
_ = plt.figure()
phase_matrix = sync_output_dynamic.allocate_phase_matrix(grid_width, grid_height, iteration)
plt.imshow(phase_matrix, cmap = plt.get_cmap('jet'), interpolation='kaiser', vmin=0.0, vmax=2.0 * math.pi)
plt.show()
@staticmethod
def show_order_parameter(sync_output_dynamic, start_iteration=None, stop_iteration=None):
"""!
@brief Shows evolution of order parameter (level of global synchronization in the network).
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network whose evolution of global synchronization should be visualized.
@param[in] start_iteration (uint): The first iteration that is used for calculation, if 'None' then the first is used
@param[in] stop_iteration (uint): The last iteration that is used for calculation, if 'None' then the last is used.
"""
(start_iteration, stop_iteration) = sync_visualizer.__get_start_stop_iterations(sync_output_dynamic, start_iteration, stop_iteration)
order_parameter = sync_output_dynamic.calculate_order_parameter(start_iteration, stop_iteration)
axis = plt.subplot(111)
plt.plot(sync_output_dynamic.time[start_iteration:stop_iteration], order_parameter, 'b-', linewidth=2.0)
set_ax_param(axis, "t", "R (order parameter)", None, [0.0, 1.05])
plt.show()
@staticmethod
def show_local_order_parameter(sync_output_dynamic, oscillatory_network, start_iteration=None, stop_iteration=None):
"""!
@brief Shows evolution of local order parameter (level of local synchronization in the network).
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network whose evolution of global synchronization should be visualized.
@param[in] oscillatory_network (sync): Sync oscillatory network whose structure of connections is required for calculation.
@param[in] start_iteration (uint): The first iteration that is used for calculation, if 'None' then the first is used
@param[in] stop_iteration (uint): The last iteration that is used for calculation, if 'None' then the last is used.
"""
(start_iteration, stop_iteration) = sync_visualizer.__get_start_stop_iterations(sync_output_dynamic, start_iteration, stop_iteration)
order_parameter = sync_output_dynamic.calculate_local_order_parameter(oscillatory_network, start_iteration, stop_iteration)
axis = plt.subplot(111)
plt.plot(sync_output_dynamic.time[start_iteration:stop_iteration], order_parameter, 'b-', linewidth=2.0)
set_ax_param(axis, "t", "R (local order parameter)", None, [0.0, 1.05])
plt.show()
@staticmethod
def animate_output_dynamic(sync_output_dynamic, animation_velocity = 75, save_movie = None):
"""!
@brief Shows animation of output dynamic (output of each oscillator) during simulation on a circle from [0; 2pi].
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] animation_velocity (uint): Interval between frames in milliseconds.
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
figure = plt.figure()
dynamic = sync_output_dynamic.output[0]
artist, = plt.polar(dynamic, [1.0] * len(dynamic), 'o', color='blue')
def init_frame():
return [artist]
def frame_generation(index_dynamic):
dynamic = sync_output_dynamic.output[index_dynamic]
artist.set_data(dynamic, [1.0] * len(dynamic))
return [artist]
phase_animation = animation.FuncAnimation(figure, frame_generation, len(sync_output_dynamic), interval = animation_velocity, init_func = init_frame, repeat_delay = 5000);
if save_movie is not None:
phase_animation.save(save_movie, writer='ffmpeg', fps=15, bitrate=1500)
else:
plt.show()
@staticmethod
def animate_correlation_matrix(sync_output_dynamic, animation_velocity = 75, colormap = 'cool', save_movie = None):
"""!
@brief Shows animation of correlation matrix between oscillators during simulation.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] animation_velocity (uint): Interval between frames in milliseconds.
@param[in] colormap (string): Name of colormap that is used by matplotlib ('gray', 'pink', 'cool', spring', etc.).
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
figure = plt.figure()
correlation_matrix = sync_output_dynamic.allocate_correlation_matrix(0)
artist = plt.imshow(correlation_matrix, cmap = plt.get_cmap(colormap), interpolation='kaiser', vmin = 0.0, vmax = 1.0)
def init_frame():
return [ artist ]
def frame_generation(index_dynamic):
correlation_matrix = sync_output_dynamic.allocate_correlation_matrix(index_dynamic)
artist.set_data(correlation_matrix)
return [artist]
correlation_animation = animation.FuncAnimation(figure, frame_generation, len(sync_output_dynamic), init_func = init_frame, interval = animation_velocity , repeat_delay = 1000, blit = True)
if save_movie is not None:
correlation_animation.save(save_movie, writer='ffmpeg', fps=15, bitrate=1500)
else:
plt.show()
@staticmethod
def animate_phase_matrix(sync_output_dynamic, grid_width=None, grid_height=None, animation_velocity=75, colormap='jet', save_movie=None):
"""!
@brief Shows animation of phase matrix between oscillators during simulation on 2D stage.
@details If grid_width or grid_height are not specified than phase matrix size will by calculated automatically by square root.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] grid_width (uint): Width of the phase matrix.
@param[in] grid_height (uint): Height of the phase matrix.
@param[in] animation_velocity (uint): Interval between frames in milliseconds.
@param[in] colormap (string): Name of colormap that is used by matplotlib ('gray', 'pink', 'cool', spring', etc.).
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
figure = plt.figure()
def init_frame():
return frame_generation(0)
def frame_generation(index_dynamic):
figure.clf()
axis = figure.add_subplot(111)
phase_matrix = sync_output_dynamic.allocate_phase_matrix(grid_width, grid_height, index_dynamic)
axis.imshow(phase_matrix, cmap=plt.get_cmap(colormap), interpolation='kaiser', vmin=0.0, vmax=2.0 * math.pi)
artist = figure.gca()
return [artist]
phase_animation = animation.FuncAnimation(figure, frame_generation, len(sync_output_dynamic), init_func = init_frame, interval = animation_velocity , repeat_delay = 1000);
if save_movie is not None:
phase_animation.save(save_movie, writer='ffmpeg', fps=15, bitrate=1500)
else:
plt.show()
@staticmethod
def __get_start_stop_iterations(sync_output_dynamic, start_iteration, stop_iteration):
"""!
@brief Apply rule of preparation for start iteration and stop iteration values.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] start_iteration (uint): The first iteration that is used for calculation.
@param[in] stop_iteration (uint): The last iteration that is used for calculation.
@return (tuple) New values of start and stop iterations.
"""
if start_iteration is None:
start_iteration = 0
if stop_iteration is None:
stop_iteration = len(sync_output_dynamic)
return start_iteration, stop_iteration
@staticmethod
def animate(sync_output_dynamic, title=None, save_movie=None):
"""!
@brief Shows animation of phase coordinates and animation of correlation matrix together for the Sync dynamic output on the same figure.
@param[in] sync_output_dynamic (sync_dynamic): Output dynamic of the Sync network.
@param[in] title (string): Title of the animation that is displayed on a figure if it is specified.
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
dynamic = sync_output_dynamic.output[0]
correlation_matrix = sync_output_dynamic.allocate_correlation_matrix(0)
figure = plt.figure(1)
if title is not None:
figure.suptitle(title, fontsize = 26, fontweight = 'bold')
ax1 = figure.add_subplot(121, projection='polar')
ax2 = figure.add_subplot(122)
artist1, = ax1.plot(dynamic, [1.0] * len(dynamic), marker='o', color='blue', ls='')
artist2 = ax2.imshow(correlation_matrix, cmap = plt.get_cmap('Accent'), interpolation='kaiser')
def init_frame():
return [artist1, artist2]
def frame_generation(index_dynamic):
dynamic = sync_output_dynamic.output[index_dynamic]
artist1.set_data(dynamic, [1.0] * len(dynamic))
correlation_matrix = sync_output_dynamic.allocate_correlation_matrix(index_dynamic)
artist2.set_data(correlation_matrix)
return [artist1, artist2]
dynamic_animation = animation.FuncAnimation(figure, frame_generation, len(sync_output_dynamic), interval=75, init_func=init_frame, repeat_delay=5000)
if save_movie is not None:
dynamic_animation.save(save_movie, writer='ffmpeg', fps=15, bitrate=1500)
else:
plt.show()
class sync_network(network):
"""!
@brief Model of oscillatory network that is based on the Kuramoto model of synchronization.
@details CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
"""
def __init__(self, num_osc, weight = 1, frequency = 0, type_conn = conn_type.ALL_TO_ALL, representation = conn_represent.MATRIX, initial_phases = initial_type.RANDOM_GAUSSIAN, ccore = True):
"""!
@brief Constructor of oscillatory network is based on Kuramoto model.
@param[in] num_osc (uint): Number of oscillators in the network.
@param[in] weight (double): Coupling strength of the links between oscillators.
@param[in] frequency (double): Multiplier of internal frequency of the oscillators.
@param[in] type_conn (conn_type): Type of connection between oscillators in the network (all-to-all, grid, bidirectional list, etc.).
@param[in] representation (conn_represent): Internal representation of connection in the network: matrix or list.
@param[in] initial_phases (initial_type): Type of initialization of initial phases of oscillators (random, uniformly distributed, etc.).
@param[in] ccore (bool): If True simulation is performed by CCORE library (C++ implementation of pyclustering).
"""
self._ccore_network_pointer = None; # Pointer to CCORE Sync implementation of the network.
if ( (ccore is True) and ccore_library.workable() ):
self._ccore_network_pointer = wrapper.sync_create_network(num_osc, weight, frequency, type_conn, initial_phases);
self._num_osc = num_osc;
self._conn_represent = conn_represent.MATRIX;
else:
super().__init__(num_osc, type_conn, representation);
self._weight = weight;
self._phases = list();
self._freq = list();
random.seed();
for index in range(0, num_osc, 1):
if (initial_phases == initial_type.RANDOM_GAUSSIAN):
self._phases.append(random.random() * 2 * pi);
elif (initial_phases == initial_type.EQUIPARTITION):
self._phases.append( pi / num_osc * index);
self._freq.append(random.random() * frequency);
def __del__(self):
"""!
@brief Destructor of oscillatory network is based on Kuramoto model.
"""
if (self._ccore_network_pointer is not None):
wrapper.sync_destroy_network(self._ccore_network_pointer);
self._ccore_network_pointer = None;
def sync_order(self):
"""!
@brief Calculates current level of global synchorization (order parameter) in the network.
@details This parameter is tend 1.0 when the oscillatory network close to global synchronization and it tend to 0.0 when
desynchronization is observed in the network. Order parameter is calculated using following equation:
\f[
r_{c}=\frac{1}{Ne^{i\varphi }}\sum_{j=0}^{N}e^{i\theta_{j}};
\f]
where \f$\varphi\f$ is a average phase coordinate in the network, \f$N\f$ is an amount of oscillators in the network.
Example:
@code
oscillatory_network = sync(16, type_conn = conn_type.ALL_TO_ALL);
output_dynamic = oscillatory_network.simulate_static(100, 10);
if (oscillatory_network.sync_order() < 0.9): print("Global synchronization is not reached yet.");
else: print("Global synchronization is reached.");
@endcode
@return (double) Level of global synchronization (order parameter).
@see sync_local_order()
"""
if (self._ccore_network_pointer is not None):
return wrapper.sync_order(self._ccore_network_pointer);
return order_estimator.calculate_sync_order(self._phases);
def sync_local_order(self):
"""!
@brief Calculates current level of local (partial) synchronization in the network.
@return (double) Level of local (partial) synchronization.
@see sync_order()
"""
if (self._ccore_network_pointer is not None):
return wrapper.sync_local_order(self._ccore_network_pointer);
return order_estimator.calculate_local_sync_order(self._phases, self);
def _phase_kuramoto(self, teta, t, argv):
"""!
@brief Returns result of phase calculation for specified oscillator in the network.
@param[in] teta (double): Phase of the oscillator that is differentiated.
@param[in] t (double): Current time of simulation.
@param[in] argv (tuple): Index of the oscillator in the list.
@return (double) New phase for specified oscillator (don't assign here).
"""
index = argv;
phase = 0;
for k in range(0, self._num_osc):
if (self.has_connection(index, k) == True):
phase += math.sin(self._phases[k] - teta);
return ( self._freq[index] + (phase * self._weight / self._num_osc) );
def simulate(self, steps, time, solution = solve_type.FAST, collect_dynamic = True):
"""!
@brief Performs static simulation of Sync oscillatory network.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] time (double): Time of simulation.
@param[in] solution (solve_type): Type of solution (solving).
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate_dynamic()
@see simulate_static()
"""
return self.simulate_static(steps, time, solution, collect_dynamic);
def simulate_dynamic(self, order = 0.998, solution = solve_type.FAST, collect_dynamic = False, step = 0.1, int_step = 0.01, threshold_changes = 0.0000001):
"""!
@brief Performs dynamic simulation of the network until stop condition is not reached. Stop condition is defined by input argument 'order'.
@param[in] order (double): Order of process synchronization, distributed 0..1.
@param[in] solution (solve_type): Type of solution.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@param[in] step (double): Time step of one iteration of simulation.
@param[in] int_step (double): Integration step, should be less than step.
@param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate()
@see simulate_static()
"""
if (self._ccore_network_pointer is not None):
ccore_instance_dynamic = wrapper.sync_simulate_dynamic(self._ccore_network_pointer, order, solution, collect_dynamic, step, int_step, threshold_changes);
return sync_dynamic(None, None, ccore_instance_dynamic);
# For statistics and integration
time_counter = 0;
# Prevent infinite loop. It's possible when required state cannot be reached.
previous_order = 0;
current_order = self.sync_local_order();
# If requested input dynamics
dyn_phase = [];
dyn_time = [];
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(0);
# Execute until sync state will be reached
while (current_order < order):
# update states of oscillators
self._phases = self._calculate_phases(solution, time_counter, step, int_step);
# update time
time_counter += step;
# if requested input dynamic
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(time_counter);
# update orders
previous_order = current_order;
current_order = self.sync_local_order();
# hang prevention
if (abs(current_order - previous_order) < threshold_changes):
# print("Warning: sync_network::simulate_dynamic - simulation is aborted due to low level of convergence rate (order = " + str(current_order) + ").");
break;
if (collect_dynamic != True):
dyn_phase.append(self._phases);
dyn_time.append(time_counter);
output_sync_dynamic = sync_dynamic(dyn_phase, dyn_time, None);
return output_sync_dynamic;
def simulate_static(self, steps, time, solution = solve_type.FAST, collect_dynamic = False):
"""!
@brief Performs static simulation of oscillatory network.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] time (double): Time of simulation.
@param[in] solution (solve_type): Type of solution.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate()
@see simulate_dynamic()
"""
if (self._ccore_network_pointer is not None):
ccore_instance_dynamic = wrapper.sync_simulate_static(self._ccore_network_pointer, steps, time, solution, collect_dynamic);
return sync_dynamic(None, None, ccore_instance_dynamic);
dyn_phase = [];
dyn_time = [];
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(0);
step = time / steps;
int_step = step / 10.0;
for t in numpy.arange(step, time + step, step):
# update states of oscillators
self._phases = self._calculate_phases(solution, t, step, int_step);
# update states of oscillators
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(t);
if (collect_dynamic != True):
dyn_phase.append(self._phases);
dyn_time.append(time);
output_sync_dynamic = sync_dynamic(dyn_phase, dyn_time);
return output_sync_dynamic;
def _calculate_phases(self, solution, t, step, int_step):
"""!
@brief Calculates new phases for oscillators in the network in line with current step.
@param[in] solution (solve_type): Type solver of the differential equation.
@param[in] t (double): Time of simulation.
@param[in] step (double): Step of solution at the end of which states of oscillators should be calculated.
@param[in] int_step (double): Step differentiation that is used for solving differential equation.
@return (list) New states (phases) for oscillators.
"""
next_phases = [0.0] * self._num_osc; # new oscillator _phases
for index in range (0, self._num_osc, 1):
if (solution == solve_type.FAST):
result = self._phases[index] + self._phase_kuramoto(self._phases[index], 0, index);
next_phases[index] = self._phase_normalization(result);
elif ( (solution == solve_type.RK4) or (solution == solve_type.RKF45) ):
result = odeint(self._phase_kuramoto, self._phases[index], numpy.arange(t - step, t, int_step), (index , ));
next_phases[index] = self._phase_normalization(result[len(result) - 1][0]);
else:
raise NameError("Solver '" + str(solution) + "' is not supported");
return next_phases;
def _phase_normalization(self, teta):
"""!
@brief Normalization of phase of oscillator that should be placed between [0; 2 * pi].
@param[in] teta (double): phase of oscillator.
@return (double) Normalized phase.
"""
norm_teta = teta;
while (norm_teta > (2.0 * pi)) or (norm_teta < 0):
if (norm_teta > (2.0 * pi)):
norm_teta -= 2.0 * pi;
else:
norm_teta += 2.0 * pi;
return norm_teta;
def get_neighbors(self, index):
"""!
@brief Finds neighbors of the oscillator with specified index.
@param[in] index (uint): index of oscillator for which neighbors should be found in the network.
@return (list) Indexes of neighbors of the specified oscillator.
"""
if ( (self._ccore_network_pointer is not None) and (self._osc_conn is None) ):
self._osc_conn = wrapper.sync_connectivity_matrix(self._ccore_network_pointer);
return super().get_neighbors(index);
def has_connection(self, i, j):
"""!
@brief Returns True if there is connection between i and j oscillators and False - if connection doesn't exist.
@param[in] i (uint): index of an oscillator in the network.
@param[in] j (uint): index of an oscillator in the network.
"""
if ( (self._ccore_network_pointer is not None) and (self._osc_conn is None) ):
self._osc_conn = wrapper.sync_connectivity_matrix(self._ccore_network_pointer);
return super().has_connection(i, j);
|