1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
"""!
@brief Phase oscillatory network for patten recognition based on modified Kuramoto model.
@details Implementation based on paper @cite article::nnet::syncpr::1.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import math
import cmath
import numpy
from pyclustering.nnet import solve_type, initial_type, conn_type,conn_represent
from pyclustering.nnet.sync import sync_network, sync_dynamic, sync_visualizer
import pyclustering.core.syncpr_wrapper as wrapper
from pyclustering.core.wrapper import ccore_library
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.animation as animation
class syncpr_dynamic(sync_dynamic):
"""!
@brief Represents output dynamic of syncpr (Sync for Pattern Recognition).
"""
def __init__(self, phase, time, ccore):
"""!
@brief Constructor of syncpr dynamic.
@param[in] phase (list): Dynamic of oscillators on each step of simulation. If ccore pointer is specified than it can be ignored.
@param[in] time (list): Simulation time.
@param[in] ccore (ctypes.pointer): Pointer to CCORE sync_dynamic instance in memory.
"""
super().__init__(phase, time, ccore);
class syncpr_visualizer(sync_visualizer):
"""!
@brief Visualizer of output dynamic of syncpr network (Sync for Pattern Recognition).
"""
@staticmethod
def show_pattern(syncpr_output_dynamic, image_height, image_width):
"""!
@brief Displays evolution of phase oscillators as set of patterns where the last one means final result of recognition.
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network.
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators).
@param[in] image_width (uint): Width of the pattern.
"""
number_pictures = len(syncpr_output_dynamic);
iteration_math_step = 1.0;
if (number_pictures > 50):
iteration_math_step = number_pictures / 50.0;
number_pictures = 50;
number_cols = int(numpy.ceil(number_pictures ** 0.5));
number_rows = int(numpy.ceil(number_pictures / number_cols));
real_index = 0, 0;
double_indexer = True;
if ( (number_cols == 1) or (number_rows == 1) ):
real_index = 0;
double_indexer = False;
(_, axarr) = plt.subplots(number_rows, number_cols);
if (number_pictures > 1):
plt.setp([ax for ax in axarr], visible = False);
iteration_display = 0.0;
for iteration in range(len(syncpr_output_dynamic)):
if (iteration >= iteration_display):
iteration_display += iteration_math_step;
ax_handle = axarr;
if (number_pictures > 1):
ax_handle = axarr[real_index];
syncpr_visualizer.__show_pattern(ax_handle, syncpr_output_dynamic, image_height, image_width, iteration);
if (double_indexer is True):
real_index = real_index[0], real_index[1] + 1;
if (real_index[1] >= number_cols):
real_index = real_index[0] + 1, 0;
else:
real_index += 1;
plt.show();
@staticmethod
def animate_pattern_recognition(syncpr_output_dynamic, image_height, image_width, animation_velocity = 75, title = None, save_movie = None):
"""!
@brief Shows animation of pattern recognition process that has been preformed by the oscillatory network.
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network.
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators).
@param[in] image_width (uint): Width of the pattern.
@param[in] animation_velocity (uint): Interval between frames in milliseconds.
@param[in] title (string): Title of the animation that is displayed on a figure if it is specified.
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
figure = plt.figure();
def init_frame():
return frame_generation(0);
def frame_generation(index_dynamic):
figure.clf();
if (title is not None):
figure.suptitle(title, fontsize = 26, fontweight = 'bold')
ax1 = figure.add_subplot(121, projection='polar');
ax2 = figure.add_subplot(122);
dynamic = syncpr_output_dynamic.output[index_dynamic];
artist1, = ax1.plot(dynamic, [1.0] * len(dynamic), marker = 'o', color = 'blue', ls = '');
artist2 = syncpr_visualizer.__show_pattern(ax2, syncpr_output_dynamic, image_height, image_width, index_dynamic);
return [ artist1, artist2 ];
cluster_animation = animation.FuncAnimation(figure, frame_generation, len(syncpr_output_dynamic), interval = animation_velocity, init_func = init_frame, repeat_delay = 5000);
if (save_movie is not None):
# plt.rcParams['animation.ffmpeg_path'] = 'C:\\Users\\annoviko\\programs\\ffmpeg-win64-static\\bin\\ffmpeg.exe';
# ffmpeg_writer = animation.FFMpegWriter();
# cluster_animation.save(save_movie, writer = ffmpeg_writer, fps = 15);
cluster_animation.save(save_movie, writer = 'ffmpeg', fps = 15, bitrate = 1500);
else:
plt.show();
@staticmethod
def __show_pattern(ax_handle, syncpr_output_dynamic, image_height, image_width, iteration):
"""!
@brief Draws pattern on specified ax.
@param[in] ax_handle (Axis): Axis where pattern should be drawn.
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network.
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators).
@param[in] image_width (uint): Width of the pattern.
@param[in] iteration (uint): Simulation iteration that should be used for extracting pattern.
@return (matplotlib.artist) Artist (pattern) that is rendered in the canvas.
"""
current_dynamic = syncpr_output_dynamic.output[iteration];
stage_picture = [(255, 255, 255)] * (image_height * image_width);
for index_phase in range(len(current_dynamic)):
phase = current_dynamic[index_phase];
pixel_color = math.floor( phase * (255 / (2 * math.pi)) );
stage_picture[index_phase] = (pixel_color, pixel_color, pixel_color);
stage = numpy.array(stage_picture, numpy.uint8);
stage = numpy.reshape(stage, (image_height, image_width) + ((3),)); # ((3),) it's size of RGB - third dimension.
image_cluster = Image.fromarray(stage);
artist = ax_handle.imshow(image_cluster, interpolation = 'none');
plt.setp(ax_handle, visible = True);
ax_handle.xaxis.set_ticklabels([]);
ax_handle.yaxis.set_ticklabels([]);
ax_handle.xaxis.set_ticks_position('none');
ax_handle.yaxis.set_ticks_position('none');
return artist;
class syncpr(sync_network):
"""!
@brief Model of phase oscillatory network for pattern recognition that is based on the Kuramoto model.
@details The model uses second-order and third-order modes of the Fourier components.
CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
Example:
@code
# Network size should be equal to size of pattern for learning.
net = syncpr(size_network, 0.3, 0.3);
# Train network using list of patterns (input images).
net.train(image_samples);
# Recognize image using 10 steps during 10 seconds of simulation.
sync_output_dynamic = net.simulate(10, 10, pattern, solve_type.RK4, True);
# Display output dynamic.
syncpr_visualizer.show_output_dynamic(sync_output_dynamic);
# Display evolution of recognition of the pattern.
syncpr_visualizer.show_pattern(sync_output_dynamic, image_height, image_width);
@endcode
"""
def __init__(self, num_osc, increase_strength1, increase_strength2, ccore = True):
"""!
@brief Constructor of oscillatory network for pattern recognition based on Kuramoto model.
@param[in] num_osc (uint): Number of oscillators in the network.
@param[in] increase_strength1 (double): Parameter for increasing strength of the second term of the Fourier component.
@param[in] increase_strength2 (double): Parameter for increasing strength of the third term of the Fourier component.
@param[in] ccore (bool): If True simulation is performed by CCORE library (C++ implementation of pyclustering).
"""
if ( (ccore is True) and ccore_library.workable() ):
self._ccore_network_pointer = wrapper.syncpr_create(num_osc, increase_strength1, increase_strength2);
else:
self._increase_strength1 = increase_strength1;
self._increase_strength2 = increase_strength2;
self._coupling = [ [0.0 for i in range(num_osc)] for j in range(num_osc) ];
super().__init__(num_osc, 1, 0, conn_type.ALL_TO_ALL, conn_represent.MATRIX, initial_type.RANDOM_GAUSSIAN, ccore)
def __del__(self):
"""!
@brief Default destructor of syncpr.
"""
if (self._ccore_network_pointer is not None):
wrapper.syncpr_destroy(self._ccore_network_pointer);
self._ccore_network_pointer = None;
def __len__(self):
"""!
@brief Returns size of the network.
"""
if (self._ccore_network_pointer is not None):
return wrapper.syncpr_get_size(self._ccore_network_pointer);
else:
return self._num_osc;
def train(self, samples):
"""!
@brief Trains syncpr network using Hebbian rule for adjusting strength of connections between oscillators during training.
@param[in] samples (list): list of patterns where each pattern is represented by list of features that are equal to [-1; 1].
"""
# Verify pattern for learning
for pattern in samples:
self.__validate_pattern(pattern);
if (self._ccore_network_pointer is not None):
return wrapper.syncpr_train(self._ccore_network_pointer, samples);
length = len(self);
number_samples = len(samples);
for i in range(length):
for j in range(i + 1, len(self), 1):
# go through via all patterns
for p in range(number_samples):
value1 = samples[p][i];
value2 = samples[p][j];
self._coupling[i][j] += value1 * value2;
self._coupling[i][j] /= length;
self._coupling[j][i] = self._coupling[i][j];
def simulate(self, steps, time, pattern, solution = solve_type.RK4, collect_dynamic = True):
"""!
@brief Performs static simulation of syncpr oscillatory network.
@details In other words network performs pattern recognition during simulation.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] time (double): Time of simulation.
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
@param[in] solution (solve_type): Type of solver that should be used for simulation.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate_dynamic()
@see simulate_static()
"""
return self.simulate_static(steps, time, pattern, solution, collect_dynamic);
def simulate_dynamic(self, pattern, order = 0.998, solution = solve_type.RK4, collect_dynamic = False, step = 0.1, int_step = 0.01, threshold_changes = 0.0000001):
"""!
@brief Performs dynamic simulation of the network until stop condition is not reached.
@details In other words network performs pattern recognition during simulation.
Stop condition is defined by input argument 'order' that represents memory order, but
process of simulation can be stopped if convergance rate is low whose threshold is defined
by the argument 'threshold_changes'.
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
@param[in] order (double): Order of process synchronization, distributed 0..1.
@param[in] solution (solve_type): Type of solution.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@param[in] step (double): Time step of one iteration of simulation.
@param[in] int_step (double): Integration step, should be less than step.
@param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate()
@see simulate_static()
"""
self.__validate_pattern(pattern);
if (self._ccore_network_pointer is not None):
ccore_instance_dynamic = wrapper.syncpr_simulate_dynamic(self._ccore_network_pointer, pattern, order, solution, collect_dynamic, step);
return syncpr_dynamic(None, None, ccore_instance_dynamic);
for i in range(0, len(pattern), 1):
if (pattern[i] > 0.0):
self._phases[i] = 0.0;
else:
self._phases[i] = math.pi / 2.0;
# For statistics and integration
time_counter = 0;
# Prevent infinite loop. It's possible when required state cannot be reached.
previous_order = 0;
current_order = self.__calculate_memory_order(pattern);
# If requested input dynamics
dyn_phase = [];
dyn_time = [];
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(0);
# Execute until sync state will be reached
while (current_order < order):
# update states of oscillators
self._phases = self._calculate_phases(solution, time_counter, step, int_step);
# update time
time_counter += step;
# if requested input dynamic
if (collect_dynamic == True):
dyn_phase.append(self._phases);
dyn_time.append(time_counter);
# update orders
previous_order = current_order;
current_order = self.__calculate_memory_order(pattern);
# hang prevention
if (abs(current_order - previous_order) < threshold_changes):
break;
if (collect_dynamic != True):
dyn_phase.append(self._phases);
dyn_time.append(time_counter);
output_sync_dynamic = syncpr_dynamic(dyn_phase, dyn_time, None);
return output_sync_dynamic;
def simulate_static(self, steps, time, pattern, solution = solve_type.FAST, collect_dynamic = False):
"""!
@brief Performs static simulation of syncpr oscillatory network.
@details In other words network performs pattern recognition during simulation.
@param[in] steps (uint): Number steps of simulations during simulation.
@param[in] time (double): Time of simulation.
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
@param[in] solution (solve_type): Type of solution.
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time,
otherwise returns only last values (last step of simulation) of dynamic.
@see simulate()
@see simulate_dynamic()
"""
self.__validate_pattern(pattern);
if (self._ccore_network_pointer is not None):
ccore_instance_dynamic = wrapper.syncpr_simulate_static(self._ccore_network_pointer, steps, time, pattern, solution, collect_dynamic);
return syncpr_dynamic(None, None, ccore_instance_dynamic);
for i in range(0, len(pattern), 1):
if (pattern[i] > 0.0):
self._phases[i] = 0.0;
else:
self._phases[i] = math.pi / 2.0;
return super().simulate_static(steps, time, solution, collect_dynamic);
def memory_order(self, pattern):
"""!
@brief Calculates function of the memorized pattern.
@details Throws exception if length of pattern is not equal to size of the network or if it consists feature with value that are not equal to [-1; 1].
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
@return (double) Order of memory for the specified pattern.
"""
self.__validate_pattern(pattern);
if (self._ccore_network_pointer is not None):
return wrapper.syncpr_memory_order(self._ccore_network_pointer, pattern);
else:
return self.__calculate_memory_order(pattern);
def __calculate_memory_order(self, pattern):
"""!
@brief Calculates function of the memorized pattern without any pattern validation.
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
@return (double) Order of memory for the specified pattern.
"""
memory_order = 0.0;
for index in range(len(self)):
memory_order += pattern[index] * cmath.exp( 1j * self._phases[index] );
memory_order /= len(self);
return abs(memory_order);
def _phase_kuramoto(self, teta, t, argv):
"""!
@brief Returns result of phase calculation for specified oscillator in the network.
@param[in] teta (double): Phase of the oscillator that is differentiated.
@param[in] t (double): Current time of simulation.
@param[in] argv (tuple): Index of the oscillator in the list.
@return (double) New phase for specified oscillator (don't assign it here).
"""
index = argv;
phase = 0.0;
term = 0.0;
for k in range(0, self._num_osc):
if (k != index):
phase_delta = self._phases[k] - teta;
phase += self._coupling[index][k] * math.sin(phase_delta);
term1 = self._increase_strength1 * math.sin(2.0 * phase_delta);
term2 = self._increase_strength2 * math.sin(3.0 * phase_delta);
term += (term1 - term2);
return ( phase + term / len(self) );
def __validate_pattern(self, pattern):
"""!
@brief Validates pattern.
@details Throws exception if length of pattern is not equal to size of the network or if it consists feature with value that are not equal to [-1; 1].
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1].
"""
if (len(pattern) != len(self)):
raise NameError('syncpr: length of the pattern (' + len(pattern) + ') should be equal to size of the network');
for feature in pattern:
if ( (feature != -1.0) and (feature != 1.0) ):
raise NameError('syncpr: patten feature (' + feature + ') should be distributed in [-1; 1]');
|