1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
"""!
@brief Templates for tests of SyncPR (oscillatory network based on Kuramoto model for pattern recognition).
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
# Generate images without having a window appear.
import matplotlib;
matplotlib.use('Agg');
from pyclustering.nnet import solve_type;
from pyclustering.nnet.syncpr import syncpr, syncpr_visualizer;
class SyncprTestTemplates:
@staticmethod
def templateOutputDynamic(solver, ccore):
net = syncpr(5, 0.1, 0.1, ccore);
output_dynamic = net.simulate(10, 10, [-1, 1, -1, 1, -1], solver, True);
assert len(output_dynamic) == 11; # 10 steps without initial values.
@staticmethod
def templateOutputDynamicLengthStaticSimulation(collect_flag, ccore_flag):
net = syncpr(5, 0.1, 0.1, ccore_flag);
output_dynamic = net.simulate_static(10, 10, [-1, 1, -1, 1, -1], solution = solve_type.FAST, collect_dynamic = collect_flag);
if (collect_flag is True):
assert len(output_dynamic) == 11; # 10 steps without initial values.
else:
assert len(output_dynamic) == 1;
@staticmethod
def templateOutputDynamicLengthDynamicSimulation(collect_flag, ccore_flag):
net = syncpr(5, 0.1, 0.1, ccore_flag);
output_dynamic = net.simulate_dynamic([-1, 1, -1, 1, -1], solution = solve_type.FAST, collect_dynamic = collect_flag);
if (collect_flag is True):
assert len(output_dynamic) > 1;
else:
assert len(output_dynamic) == 1;
@staticmethod
def templateIncorrectPatternForSimulation(pattern, ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore=ccore_flag);
try: net.simulate(10, 10, pattern);
except: return;
assert False;
@staticmethod
def templateTrainNetworkAndRecognizePattern(ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
patterns = [];
patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
net.train(patterns);
# recognize it
for i in range(len(patterns)):
output_dynamic = net.simulate(10, 10, patterns[i], solve_type.RK4, True);
ensembles = output_dynamic.allocate_sync_ensembles(0.5);
assert len(ensembles) == 2;
assert len(ensembles[0]) == len(ensembles[1]);
# sort results
ensembles[0].sort();
ensembles[1].sort();
assert (ensembles[0] == [0, 1, 2, 3, 4]) or (ensembles[0] == [5, 6, 7, 8, 9]);
assert (ensembles[1] == [0, 1, 2, 3, 4]) or (ensembles[1] == [5, 6, 7, 8, 9]);
@staticmethod
def templateIncorrectPatternForTraining(patterns, ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
try: net.train(patterns);
except: return;
assert False;
@staticmethod
def templatePatternVisualizer(collect_dynamic, ccore_flag = False):
net = syncpr(5, 0.1, 0.1, ccore = ccore_flag);
output_dynamic = net.simulate(10, 10, [-1, 1, -1, 1, -1], solve_type.RK4, collect_dynamic);
syncpr_visualizer.show_pattern(output_dynamic, 5, 2);
syncpr_visualizer.animate_pattern_recognition(output_dynamic, 1, 5);
@staticmethod
def templateMemoryOrder(ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
patterns = [];
patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
net.train(patterns);
assert net.memory_order(patterns[0]) < 0.8;
assert net.memory_order(patterns[1]) < 0.8;
for pattern in patterns:
net.simulate(20, 10, pattern, solve_type.RK4);
memory_order = net.memory_order(pattern);
assert (memory_order > 0.95) and (memory_order <= 1.000005);
@staticmethod
def templateStaticSimulation(ccore_falg):
net = syncpr(10, 0.1, 0.1, ccore_falg);
patterns = [];
patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
net.train(patterns);
net.simulate_static(20, 10, patterns[0], solve_type.RK4);
memory_order = net.memory_order(patterns[0]);
assert (memory_order > 0.95) and (memory_order <= 1.000005);
@staticmethod
def templateDynamicSimulation(ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
patterns = [];
patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
net.train(patterns);
net.simulate_dynamic(patterns[0], order = 0.998, solution = solve_type.RK4);
memory_order = net.memory_order(patterns[0]);
assert (memory_order > 0.998) and (memory_order <= 1.0);
@staticmethod
def templateGlobalSyncOrder(ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
patterns = [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
global_sync_order = net.sync_order();
assert (global_sync_order < 1.0) and (global_sync_order > 0.0);
net.train(patterns);
global_sync_order = net.sync_order();
assert (global_sync_order < 1.0) and (global_sync_order > 0.0);
@staticmethod
def templateLocalSyncOrder(ccore_flag):
net = syncpr(10, 0.1, 0.1, ccore_flag);
patterns = [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ];
local_sync_order = net.sync_local_order();
assert (local_sync_order < 1.0) and (local_sync_order > 0.0);
net.train(patterns);
local_sync_order = net.sync_local_order();
assert (local_sync_order < 1.0) and (local_sync_order > 0.0);
@staticmethod
def templateIncorrectPatternValues(ccore_flag):
patterns = [];
patterns += [ [2, 1, 1, 1, 1, -1, -1, -1, -1, -1] ];
patterns += [ [-1, -2, -1, -1, -1, 1, 1, 1, 1, 1] ];
SyncprTestTemplates.templateIncorrectPatternForTraining(patterns, ccore_flag);
|