File: ut_fsync.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (149 lines) | stat: -rwxr-xr-x 6,771 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""!

@brief Unit-tests for Oscillatory Neural Network based on Kuramoto model and Landau-Stuart.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""

import unittest;

# Generate images without having a window appear.
import matplotlib;
matplotlib.use('Agg');


from pyclustering.nnet import conn_type, conn_represent;
from pyclustering.nnet.fsync import fsync_network, fsync_visualizer;


class FsyncUnitTest(unittest.TestCase):
    def templateCreateNetwork(self, network_size):
        oscillatory_network = fsync_network(network_size);
        assert len(oscillatory_network) == network_size;
    
    
    def testCreateNetworkSize1(self):
        self.templateCreateNetwork(1);

    def testCreateNetworkSize20(self):
        self.templateCreateNetwork(20);

    def testCreateNetworkSize100(self):
        self.templateCreateNetwork(100);


    def templateSimulateStaticOutputDynamic(self, num_osc, steps, time, collect_dynamic):
        oscillatory_network = fsync_network(num_osc);
        output_dynamic = oscillatory_network.simulate(steps, time, collect_dynamic);
        
        if (collect_dynamic is True):
            assert len(output_dynamic) == steps + 1;
            assert output_dynamic.time[0] == 0;
        else:
            assert len(output_dynamic) == 1;
        
        assert output_dynamic.time[len(output_dynamic) - 1] == time;

    def testSimulateStatic10StepsTime10(self):
        self.templateSimulateStaticOutputDynamic(10, 10, 10, True);

    def testSimulateStatic100StepsTime10(self):
        self.templateSimulateStaticOutputDynamic(3, 100, 10, True);

    def testSimulateStatic100StepsTime1(self):
        self.templateSimulateStaticOutputDynamic(3, 100, 1, True);

    def testSimulateStatic50StepsTime10WithoutCollecting(self):
        self.templateSimulateStaticOutputDynamic(3, 50, 10, False);

    def testSimulateStatic100StepsTime10WithoutCollecting(self):
        self.templateSimulateStaticOutputDynamic(1, 100, 10, False);


    def templateGlobalSynchronization(self, size, steps, time, frequency, radius, coupling, amplitude_threshold, connections, representation):
        oscillatory_network = fsync_network(size, frequency, radius, coupling, connections, representation);
        output_dynamic = oscillatory_network.simulate(steps, time, True);
        
        for index_oscillator in range(len(oscillatory_network)):
            assert output_dynamic.extract_number_oscillations(index_oscillator, amplitude_threshold) > 0;

        sync_ensembles = output_dynamic.allocate_sync_ensembles(amplitude_threshold);
        assert len(sync_ensembles) == 1;
        assert len(sync_ensembles[0]) == size;

    def testGlobalSyncOneOscillatorAllToAll(self):
        self.templateGlobalSynchronization(1, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorAllToAll(self):
        self.templateGlobalSynchronization(5, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorGridFour(self):
        self.templateGlobalSynchronization(1, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.GRID_FOUR, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorGridFour(self):
        self.templateGlobalSynchronization(9, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.GRID_FOUR, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorGridEight(self):
        self.templateGlobalSynchronization(1, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.GRID_EIGHT, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorGridEight(self):
        self.templateGlobalSynchronization(9, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.GRID_EIGHT, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorBidir(self):
        self.templateGlobalSynchronization(1, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.LIST_BIDIR, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorBidir(self):
        self.templateGlobalSynchronization(5, 50, 10, 1.0, 1.0, 1.0, 0.8, conn_type.LIST_BIDIR, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorDifferentFrequency(self):
        self.templateGlobalSynchronization(1, 50, 10, [ 1.0 ], 1.0, 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorDifferentFrequency(self):
        self.templateGlobalSynchronization(5, 100, 20, [ 1.0, 1.1, 1.1, 1.2, 1.15 ], 1.0, 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorDifferentRadius(self):
        self.templateGlobalSynchronization(1, 50, 10, 1.0, [ 1.0 ], 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorDifferentRadius(self):
        self.templateGlobalSynchronization(5, 50, 10, 1.0, [ 1.0, 2.0, 3.0, 4.0, 5.0 ], 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncOneOscillatorDifferentProperty(self):
        self.templateGlobalSynchronization(1, 50, 10, [ 1.0 ], [ 1.0 ], 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);

    def testGlobalSyncGroupOscillatorDifferentProperty(self):
        self.templateGlobalSynchronization(5, 100, 20, [ 1.0, 1.1, 1.1, 1.2, 1.15 ], [ 1.0, 2.0, 3.0, 4.0, 5.0 ], 1.0, 0.8, conn_type.ALL_TO_ALL, conn_represent.MATRIX);


    def templateNoOscillations(self, size, steps, time, frequency, radius, amplitude_threshold):
        oscillatory_network = fsync_network(size, frequency, radius);
        output_dynamic = oscillatory_network.simulate(steps, time, True);
        
        for index_oscillator in range(len(oscillatory_network)):
            assert output_dynamic.extract_number_oscillations(index_oscillator, amplitude_threshold) == 0;

    def testNoOscillationsZeroFrequency(self):
        self.templateNoOscillations(5, 50, 10, 0.0, 1.0, 0.5);

    def testNoOscillationsZeroRadius(self):
        self.templateNoOscillations(5, 50, 10, 1.0, 0.0, 0.5);


    def testLackCrashGraphics(self):
        oscillatory_network = fsync_network(5);
        
        output_dynamic = oscillatory_network.simulate(50, 10, True);
        
        fsync_visualizer.show_output_dynamic(output_dynamic);
        fsync_visualizer.show_output_dynamics([output_dynamic]);

    def testLackCrashGraphicsDynamicSet(self):
        oscillatory_network_1 = fsync_network(2);
        oscillatory_network_2 = fsync_network(3);
        
        output_dynamic_1 = oscillatory_network_1.simulate(50, 10, True);
        output_dynamic_2 = oscillatory_network_2.simulate(50, 10, True);

        fsync_visualizer.show_output_dynamics([output_dynamic_1, output_dynamic_2]);