1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
"""!
@brief Unit-tests for double-layer oscillatory network 'syncsegm' for image segmentation based on Kuramoto model.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import unittest;
# Generate images without having a window appear.
import matplotlib;
matplotlib.use('Agg');
from pyclustering.nnet.tests.syncsegm_templates import SyncsegmTestTemplates;
from pyclustering.samples.definitions import IMAGE_SIMPLE_SAMPLES;
class SyncsegmUnitTest(unittest.TestCase):
def testImageSegmentationSimple17(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE17, 225, 1, 0, 3, 3, False, False);
def testImageSegmentationSimple17OneObjectDetection(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE17, 225, 5, 0, 3, 3, False, False);
def testImageSegmentationSimple17OneColorDetection(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE17, float('Inf'), 1, 0, 1, 1, False, False);
def testImageSegmentationSimple18(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE18, 225, 1, 0, 2, 3, False, False);
def testImageSegmentationSimple18OneObjectDetection(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE18, 225, 5, 0, 2, 2, False, False);
def testImageSegmentationSimple18OneColorDetection(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE18, float('Inf'), 2, 0, 1, 1, False, False);
def testVisualizeSimple17NoFailure(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE17, 225, 1, 0, 3, 3, False, False);
def testVisualizeSimple18NoFailure(self):
SyncsegmTestTemplates.templateSyncsegmSegmentation(IMAGE_SIMPLE_SAMPLES.IMAGE_SIMPLE18, 225, 1, 0, 2, 3, False, False);
|