File: __init__.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (1327 lines) | stat: -rwxr-xr-x 49,551 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
"""!

@brief Utils that are used by modules of pyclustering.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""

import time
import numpy


from numpy import array
from PIL import Image

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sys import platform as _platform

from pyclustering.utils.metric import distance_metric, type_metric


## The number \f$pi\f$ is a mathematical constant, the ratio of a circle's circumference to its diameter.
pi = 3.1415926535


def read_sample(filename):
    """!
    @brief Returns data sample from simple text file.
    @details This function should be used for text file with following format:
    @code
    point_1_coord_1 point_1_coord_2 ... point_1_coord_n
    point_2_coord_1 point_2_coord_2 ... point_2_coord_n
    ... ...
    @endcode
    
    @param[in] filename (string): Path to file with data.
    
    @return (list) Points where each point represented by list of coordinates.
    
    """
    
    file = open(filename, 'r')

    sample = [[float(val) for val in line.split()] for line in file if len(line.strip()) > 0]
    
    file.close()
    return sample


def calculate_distance_matrix(sample, metric=distance_metric(type_metric.EUCLIDEAN)):
    """!
    @brief Calculates distance matrix for data sample (sequence of points) using specified metric (by default Euclidean distance).

    @param[in] sample (array_like): Data points that are used for distance calculation.
    @param[in] metric (distance_metric): Metric that is used for distance calculation between two points.

    @return (list) Matrix distance between data points.

    """

    amount_rows = len(sample)
    return [[metric(sample[i], sample[j]) for j in range(amount_rows)] for i in range(amount_rows)]


def read_image(filename):
    """!
    @brief Returns image as N-dimension (depends on the input image) matrix, where one element of list describes pixel.
    
    @param[in] filename (string): Path to image.
    
    @return (list) Pixels where each pixel described by list of RGB-values.
    
    """
    
    with Image.open(filename) as image_source:
        data = [list(pixel) for pixel in image_source.getdata()]
        return data


def rgb2gray(image_rgb_array):
    """!
    @brief Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel.
    @details Luma coding is used for transformation and that is calculated directly from gamma-compressed primary intensities as a weighted sum:
    
    \f[Y = 0.2989R + 0.587G + 0.114B\f]
    
    @param[in] image_rgb_array (list): Image represented by RGB list.
    
    @return (list) Image as gray colored matrix, where one element of list describes pixel.
    
    @code
        colored_image = read_image(file_name);
        gray_image = rgb2gray(colored_image);
    @endcode
    
    @see read_image()
    
    """
    
    image_gray_array = [0.0] * len(image_rgb_array)
    for index in range(0, len(image_rgb_array), 1):
        image_gray_array[index] = float(image_rgb_array[index][0]) * 0.2989 \
                                  + float(image_rgb_array[index][1]) * 0.5870 \
                                  + float(image_rgb_array[index][2]) * 0.1140
    
    return image_gray_array


def stretch_pattern(image_source):
    """!
    @brief Returns stretched content as 1-dimension (gray colored) matrix with size of input image.
    
    @param[in] image_source (Image): PIL Image instance.
    
    @return (list, Image) Stretched image as gray colored matrix and source image.
    
    """
    wsize, hsize = image_source.size
    
    # Crop digit exactly
    (ws, hs, we, he) = gray_pattern_borders(image_source)
    image_source = image_source.crop((ws, hs, we, he))
    
    # Stretch it to initial sizes
    image_source = image_source.resize((wsize, hsize), Image.ANTIALIAS)
    
    # Transform image to simple array
    data = [pixel for pixel in image_source.getdata()]
    image_pattern = rgb2gray(data)
    
    return image_pattern, image_source


def gray_pattern_borders(image):
    """!
    @brief Returns coordinates of gray image content on the input image.
    
    @param[in] image (Image): PIL Image instance that is processed.
    
    @return (tuple) Returns coordinates of gray image content as (width_start, height_start, width_end, height_end).
    
    """
    
    width, height = image.size
    
    width_start = width
    width_end = 0
    height_start = height
    height_end = 0
    
    row, col = 0, 0
    for pixel in image.getdata():
        value = float(pixel[0]) * 0.2989 + float(pixel[1]) * 0.5870 + float(pixel[2]) * 0.1140
        
        if value < 128:
            if width_end < col:
                width_end = col
            
            if height_end < row:
                height_end = row
        
            if width_start > col:
                width_start = col
            
            if height_start > row:
                height_start = row
        
        col += 1
        if col >= width:
            col = 0
            row += 1

    return width_start, height_start, width_end + 1, height_end + 1


def average_neighbor_distance(points, num_neigh):
    """!
    @brief Returns average distance for establish links between specified number of nearest neighbors.
    
    @param[in] points (list): Input data, list of points where each point represented by list.
    @param[in] num_neigh (uint): Number of neighbors that should be used for distance calculation.
    
    @return (double) Average distance for establish links between 'num_neigh' in data set 'points'.
    
    """
    
    if num_neigh > len(points) - 1:
        raise NameError('Impossible to calculate average distance to neighbors '
                        'when number of object is less than number of neighbors.')
    
    dist_matrix = [[0.0 for i in range(len(points))] for _ in range(len(points))]
    for i in range(0, len(points), 1):
        for j in range(i + 1, len(points), 1):
            distance = euclidean_distance(points[i], points[j])
            dist_matrix[i][j] = distance
            dist_matrix[j][i] = distance
            
        dist_matrix[i] = sorted(dist_matrix[i])

    total_distance = 0
    for i in range(0, len(points), 1):
        # start from 0 - first element is distance to itself.
        for j in range(0, num_neigh, 1):
            total_distance += dist_matrix[i][j + 1]
            
    return total_distance / (num_neigh * len(points))


def medoid(data, indexes=None, **kwargs):
    """!
    @brief Calculate medoid for input points.
    
    @param[in] data (list): Set of points for that median should be calculated.
    @param[in] indexes (list): Indexes of input set of points that will be taken into account during median calculation.
    @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric', 'data_type').

    <b>Keyword Args:</b><br>
        - metric (distance_metric): Metric that is used for distance calculation between two points.
        - data_type (string): Data type of input sample 'data' (available values: 'points', 'distance_matrix').

    @return (uint) index of point in input set that corresponds to median.
    
    """
    
    index_median = None
    distance = float('Inf')

    metric = kwargs.get('metric', type_metric.EUCLIDEAN_SQUARE)
    data_type = kwargs.get('data_type', 'points')

    if data_type == 'points':
        calculator = lambda index1, index2: metric(data[index1], data[index2])
    elif data_type == 'distance_matrix':
        if isinstance(data, numpy.matrix):
            calculator = lambda index1, index2: data.item(index1, index2)

        else:
            calculator = lambda index1, index2: data[index1][index2]
    else:
        raise TypeError("Unknown type of data is specified '%s'." % data_type)

    if indexes is None:
        range_points = range(len(data))
    else:
        range_points = indexes
    
    for index_candidate in range_points:
        distance_candidate = 0.0
        for index in range_points:
            distance_candidate += calculator(index_candidate, index)
        
        if distance_candidate < distance:
            distance = distance_candidate
            index_median = index_candidate
    
    return index_median


def euclidean_distance(a, b):
    """!
    @brief Calculate Euclidean distance between vector a and b. 
    @details The Euclidean between vectors (points) a and b is calculated by following formula:
    
    \f[
    dist(a, b) = \sqrt{ \sum_{i=0}^{N}(b_{i} - a_{i})^{2}) };
    \f]
    
    Where N is a length of each vector.
    
    @param[in] a (list): The first vector.
    @param[in] b (list): The second vector.
    
    @return (double) Euclidian distance between two vectors.
    
    @note This function for calculation is faster then standard function in ~100 times!
    
    """
    
    distance = euclidean_distance_square(a, b);
    return distance**(0.5);


def euclidean_distance_square(a, b):
    """!
    @brief Calculate square Euclidian distance between vector a and b.
    
    @param[in] a (list): The first vector.
    @param[in] b (list): The second vector.
    
    @return (double) Square Euclidian distance between two vectors.
    
    """  
    
    if ( ((type(a) == float) and (type(b) == float)) or ((type(a) == int) and (type(b) == int)) ):
        return (a - b)**2.0;
    
    distance = 0.0;
    for i in range(0, len(a)):
        distance += (a[i] - b[i])**2.0;
        
    return distance;


def manhattan_distance(a, b):
    """!
    @brief Calculate Manhattan distance between vector a and b.
    
    @param[in] a (list): The first cluster.
    @param[in] b (list): The second cluster.
    
    @return (double) Manhattan distance between two vectors.
    
    """
    
    if ( ((type(a) == float) and (type(b) == float)) or ((type(a) == int) and (type(b) == int)) ):
        return abs(a - b);
    
    distance = 0.0;
    dimension = len(a);
    
    for i in range(0, dimension):
        distance += abs(a[i] - b[i]);
    
    return distance;


def average_inter_cluster_distance(cluster1, cluster2, data = None):
    """!
    @brief Calculates average inter-cluster distance between two clusters.
    @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified),
             or by list of indexes of points from the data (represented by list of points), in this case 
             data should be specified.
             
    @param[in] cluster1 (list): The first cluster where each element can represent index from the data or object itself.
    @param[in] cluster2 (list): The second cluster where each element can represent index from the data or object itself.
    @param[in] data (list): If specified than elements of clusters will be used as indexes,
               otherwise elements of cluster will be considered as points.
    
    @return (double) Average inter-cluster distance between two clusters.
    
    """
    
    distance = 0.0;
    
    if (data is None):
        for i in range(len(cluster1)):
            for j in range(len(cluster2)):
                distance += euclidean_distance_square(cluster1[i], cluster2[j]);
    else:
        for i in range(len(cluster1)):
            for j in range(len(cluster2)):
                distance += euclidean_distance_square(data[ cluster1[i]], data[ cluster2[j]]);
    
    distance /= float(len(cluster1) * len(cluster2));
    return distance ** 0.5;


def average_intra_cluster_distance(cluster1, cluster2, data=None):
    """!
    @brief Calculates average intra-cluster distance between two clusters.
    @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified),
             or by list of indexes of points from the data (represented by list of points), in this case 
             data should be specified.
    
    @param[in] cluster1 (list): The first cluster.
    @param[in] cluster2 (list): The second cluster.
    @param[in] data (list): If specified than elements of clusters will be used as indexes,
               otherwise elements of cluster will be considered as points.
    
    @return (double) Average intra-cluster distance between two clusters.
    
    """
        
    distance = 0.0
    
    for i in range(len(cluster1) + len(cluster2)):
        for j in range(len(cluster1) + len(cluster2)):
            if data is None:
                # the first point
                if i < len(cluster1):
                    first_point = cluster1[i]
                else:
                    first_point = cluster2[i - len(cluster1)]
                
                # the second point
                if j < len(cluster1):
                    second_point = cluster1[j]
                else:
                    second_point = cluster2[j - len(cluster1)]
                
            else:
                # the first point
                if i < len(cluster1):
                    first_point = data[cluster1[i]]
                else:
                    first_point = data[cluster2[i - len(cluster1)]]
            
                if j < len(cluster1):
                    second_point = data[cluster1[j]]
                else:
                    second_point = data[cluster2[j - len(cluster1)]]
            
            distance += euclidean_distance_square(first_point, second_point)
    
    distance /= float((len(cluster1) + len(cluster2)) * (len(cluster1) + len(cluster2) - 1.0))
    return distance ** 0.5


def variance_increase_distance(cluster1, cluster2, data = None):
    """!
    @brief Calculates variance increase distance between two clusters.
    @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified),
             or by list of indexes of points from the data (represented by list of points), in this case 
             data should be specified.
    
    @param[in] cluster1 (list): The first cluster.
    @param[in] cluster2 (list): The second cluster.
    @param[in] data (list): If specified than elements of clusters will be used as indexes,
               otherwise elements of cluster will be considered as points.
    
    @return (double) Average variance increase distance between two clusters.
    
    """
    
    # calculate local sum
    if data is None:
        member_cluster1 = [0.0] * len(cluster1[0])
        member_cluster2 = [0.0] * len(cluster2[0])
        
    else:
        member_cluster1 = [0.0] * len(data[0])
        member_cluster2 = [0.0] * len(data[0])
    
    for i in range(len(cluster1)):
        if data is None:
            member_cluster1 = list_math_addition(member_cluster1, cluster1[i])
        else:
            member_cluster1 = list_math_addition(member_cluster1, data[ cluster1[i] ])

    for j in range(len(cluster2)):
        if data is None:
            member_cluster2 = list_math_addition(member_cluster2, cluster2[j])
        else:
            member_cluster2 = list_math_addition(member_cluster2, data[ cluster2[j] ])
    
    member_cluster_general = list_math_addition(member_cluster1, member_cluster2)
    member_cluster_general = list_math_division_number(member_cluster_general, len(cluster1) + len(cluster2))
    
    member_cluster1 = list_math_division_number(member_cluster1, len(cluster1))
    member_cluster2 = list_math_division_number(member_cluster2, len(cluster2))
    
    # calculate global sum
    distance_general = 0.0
    distance_cluster1 = 0.0
    distance_cluster2 = 0.0
    
    for i in range(len(cluster1)):
        if data is None:
            distance_cluster1 += euclidean_distance_square(cluster1[i], member_cluster1)
            distance_general += euclidean_distance_square(cluster1[i], member_cluster_general)
            
        else:
            distance_cluster1 += euclidean_distance_square(data[ cluster1[i]], member_cluster1)
            distance_general += euclidean_distance_square(data[ cluster1[i]], member_cluster_general)
    
    for j in range(len(cluster2)):
        if data is None:
            distance_cluster2 += euclidean_distance_square(cluster2[j], member_cluster2)
            distance_general += euclidean_distance_square(cluster2[j], member_cluster_general)
            
        else:
            distance_cluster2 += euclidean_distance_square(data[ cluster2[j]], member_cluster2)
            distance_general += euclidean_distance_square(data[ cluster2[j]], member_cluster_general)
    
    return distance_general - distance_cluster1 - distance_cluster2


def calculate_ellipse_description(covariance, scale = 2.0):
    """!
    @brief Calculates description of ellipse using covariance matrix.
    
    @param[in] covariance (numpy.array): Covariance matrix for which ellipse area should be calculated.
    @param[in] scale (float): Scale of the ellipse.
    
    @return (float, float, float) Return ellipse description: angle, width, height.
    
    """
    
    eigh_values, eigh_vectors = numpy.linalg.eigh(covariance)
    order = eigh_values.argsort()[::-1]
    
    values, vectors = eigh_values[order], eigh_vectors[order]
    angle = numpy.degrees(numpy.arctan2(*vectors[:,0][::-1]))

    if 0.0 in values:
        return 0, 0, 0

    width, height = 2.0 * scale * numpy.sqrt(values)
    return angle, width, height


def data_corners(data, data_filter = None):
    """!
    @brief Finds maximum and minimum corner in each dimension of the specified data.
    
    @param[in] data (list): List of points that should be analysed.
    @param[in] data_filter (list): List of indexes of the data that should be analysed,
                if it is 'None' then whole 'data' is analysed to obtain corners.
    
    @return (list) Tuple of two points that corresponds to minimum and maximum corner (min_corner, max_corner).
    
    """
    
    dimensions = len(data[0])
    
    bypass = data_filter
    if bypass is None:
        bypass = range(len(data))
    
    maximum_corner = list(data[bypass[0]][:])
    minimum_corner = list(data[bypass[0]][:])
    
    for index_point in bypass:
        for index_dimension in range(dimensions):
            if data[index_point][index_dimension] > maximum_corner[index_dimension]:
                maximum_corner[index_dimension] = data[index_point][index_dimension]
            
            if data[index_point][index_dimension] < minimum_corner[index_dimension]:
                minimum_corner[index_dimension] = data[index_point][index_dimension]
    
    return minimum_corner, maximum_corner


def norm_vector(vector):
    """!
    @brief Calculates norm of an input vector that is known as a vector length.
    
    @param[in] vector (list): The input vector whose length is calculated.
    
    @return (double) vector norm known as vector length.
    
    """
    
    length = 0.0
    for component in vector:
        length += component * component
    
    length = length ** 0.5
    
    return length


def heaviside(value):
    """!
    @brief Calculates Heaviside function that represents step function.
    @details If input value is greater than 0 then returns 1, otherwise returns 0.
    
    @param[in] value (double): Argument of Heaviside function.
    
    @return (double) Value of Heaviside function.
    
    """
    if (value > 0.0): 
        return 1.0;
    
    return 0.0;


def timedcall(executable_function, *args, **kwargs):
    """!
    @brief Executes specified method or function with measuring of execution time.
    
    @param[in] executable_function (pointer): Pointer to a function or method that should be called.
    @param[in] *args: Arguments of the called function or method.
    @param[in] **kwargs:  Arbitrary keyword arguments of the called function or method.
    
    @return (tuple) Execution time and result of execution of function or method (execution_time, result_execution).
    
    """
    
    time_start = time.perf_counter()
    result = executable_function(*args, **kwargs)
    time_end = time.perf_counter()
    
    return time_end - time_start, result


def extract_number_oscillations(osc_dyn, index = 0, amplitude_threshold = 1.0):
    """!
    @brief Extracts number of oscillations of specified oscillator.
    
    @param[in] osc_dyn (list): Dynamic of oscillators.
    @param[in] index (uint): Index of oscillator in dynamic.
    @param[in] amplitude_threshold (double): Amplitude threshold when oscillation is taken into account, for example,
                when oscillator amplitude is greater than threshold then oscillation is incremented.
    
    @return (uint) Number of oscillations of specified oscillator.
    
    """
    
    number_oscillations = 0;
    waiting_differential = False;
    threshold_passed = False;
    high_level_trigger = True if (osc_dyn[0][index] > amplitude_threshold) else False;
    
    for values in osc_dyn:
        if ( (values[index] >= amplitude_threshold) and (high_level_trigger is False) ):
            high_level_trigger = True;
            threshold_passed = True;
        
        elif ( (values[index] < amplitude_threshold) and (high_level_trigger is True) ):
            high_level_trigger = False;
            threshold_passed = True;
        
        if (threshold_passed is True):
            threshold_passed = False;
            if (waiting_differential is True and high_level_trigger is False):
                number_oscillations += 1;
                waiting_differential = False;

            else:
                waiting_differential = True;
        
    return number_oscillations;


def allocate_sync_ensembles(dynamic, tolerance = 0.1, threshold = 1.0, ignore = None):
    """!
    @brief Allocate clusters in line with ensembles of synchronous oscillators where each
           synchronous ensemble corresponds to only one cluster.
    
    @param[in] dynamic (dynamic): Dynamic of each oscillator.
    @param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators.
    @param[in] threshold (double): Amlitude trigger when spike is taken into account.
    @param[in] ignore (bool): Set of indexes that shouldn't be taken into account.
    
    @return (list) Grours (lists) of indexes of synchronous oscillators, for example, 
            [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ].
            
    """
    
    descriptors = [ [] for _ in range(len(dynamic[0])) ];
    
    # Check from the end for obtaining result
    for index_dyn in range(0, len(dynamic[0]), 1):
        if ((ignore is not None) and (index_dyn in ignore)):
            continue;
        
        time_stop_simulation = len(dynamic) - 1;
        active_state = False;
        
        if (dynamic[time_stop_simulation][index_dyn] > threshold):
            active_state = True;
            
        # if active state is detected, it means we don't have whole oscillatory period for the considered oscillator, should be skipped.
        if (active_state is True):
            while ( (dynamic[time_stop_simulation][index_dyn] > threshold) and (time_stop_simulation > 0) ):
                time_stop_simulation -= 1;
            
            # if there are no any oscillation than let's consider it like noise
            if (time_stop_simulation == 0):
                continue;
            
            # reset
            active_state = False;
        
        desc = [0, 0, 0]; # end, start, average time of oscillation
        for t in range(time_stop_simulation, 0, -1):
            if ( (dynamic[t][index_dyn] > threshold) and (active_state is False) ):
                desc[0] = t;
                active_state = True;
            elif ( (dynamic[t][index_dyn] < threshold) and (active_state is True) ):
                desc[1] = t;
                active_state = False;
                
                break;
        
        if (desc == [0, 0, 0]):
            continue;
        
        desc[2] = desc[1] + (desc[0] - desc[1]) / 2.0;
        descriptors[index_dyn] = desc;
    
    
    # Cluster allocation
    sync_ensembles = [];
    desc_sync_ensembles = [];
    
    for index_desc in range(0, len(descriptors), 1):
        if (descriptors[index_desc] == []):
            continue;
        
        if (len(sync_ensembles) == 0):
            desc_ensemble = descriptors[index_desc];
            reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
            
            desc_ensemble[0] = desc_ensemble[2] + reducer;
            desc_ensemble[1] = desc_ensemble[2] - reducer;
            
            desc_sync_ensembles.append(desc_ensemble);
            sync_ensembles.append([ index_desc ]);
        else:
            oscillator_captured = False;
            for index_ensemble in range(0, len(sync_ensembles), 1):
                if ( (desc_sync_ensembles[index_ensemble][0] > descriptors[index_desc][2]) and (desc_sync_ensembles[index_ensemble][1] < descriptors[index_desc][2])):
                    sync_ensembles[index_ensemble].append(index_desc);
                    oscillator_captured = True;
                    break;
                
            if (oscillator_captured is False):
                desc_ensemble = descriptors[index_desc];
                reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
        
                desc_ensemble[0] = desc_ensemble[2] + reducer;
                desc_ensemble[1] = desc_ensemble[2] - reducer;
        
                desc_sync_ensembles.append(desc_ensemble);
                sync_ensembles.append([ index_desc ]);
    
    return sync_ensembles;
    
    
def draw_clusters(data, clusters, noise = [], marker_descr = '.', hide_axes = False, axes = None, display_result = True):
    """!
    @brief Displays clusters for data in 2D or 3D.
    
    @param[in] data (list): Points that are described by coordinates represented.
    @param[in] clusters (list): Clusters that are represented by lists of indexes where each index corresponds to point in data.
    @param[in] noise (list): Points that are regarded to noise.
    @param[in] marker_descr (string): Marker for displaying points.
    @param[in] hide_axes (bool): If True - axes is not displayed.
    @param[in] axes (ax) Matplotlib axes where clusters should be drawn, if it is not specified (None) then new plot will be created.
    @param[in] display_result (bool): If specified then matplotlib axes will be used for drawing and plot will not be shown.
    
    @return (ax) Matplotlib axes where drawn clusters are presented.
    
    """
    # Get dimension
    dimension = 0;
    if ( (data is not None) and (clusters is not None) ):
        dimension = len(data[0]);
    elif ( (data is None) and (clusters is not None) ):
        dimension = len(clusters[0][0]);
    else:
        raise NameError('Data or clusters should be specified exactly.');
    
    "Draw clusters"
    colors = [ 'red', 'blue', 'darkgreen', 'brown', 'violet', 
               'deepskyblue', 'darkgrey', 'lightsalmon', 'deeppink', 'yellow',
               'black', 'mediumspringgreen', 'orange', 'darkviolet', 'darkblue',
               'silver', 'lime', 'pink', 'gold', 'bisque' ];
               
    if (len(clusters) > len(colors)):
        raise NameError('Impossible to represent clusters due to number of specified colors.');
    
    fig = plt.figure();
    
    if (axes is None):
        # Check for dimensions
        if ((dimension) == 1 or (dimension == 2)):
            axes = fig.add_subplot(111);
        elif (dimension == 3):
            axes = fig.gca(projection='3d');
        else:
            raise NameError('Drawer supports only 2d and 3d data representation');
    
    color_index = 0;
    for cluster in clusters:
        color = colors[color_index];
        for item in cluster:
            if (dimension == 1):
                if (data is None):
                    axes.plot(item[0], 0.0, color = color, marker = marker_descr);
                else:
                    axes.plot(data[item][0], 0.0, color = color, marker = marker_descr);
            
            if (dimension == 2):
                if (data is None):
                    axes.plot(item[0], item[1], color = color, marker = marker_descr);
                else:
                    axes.plot(data[item][0], data[item][1], color = color, marker = marker_descr);
                    
            elif (dimension == 3):
                if (data is None):
                    axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr);
                else:
                    axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr);
        
        color_index += 1;
    
    for item in noise:
        if (dimension == 1):
            if (data is None):
                axes.plot(item[0], 0.0, 'w' + marker_descr);
            else:
                axes.plot(data[item][0], 0.0, 'w' + marker_descr);

        if (dimension == 2):
            if (data is None):
                axes.plot(item[0], item[1], 'w' + marker_descr);
            else:
                axes.plot(data[item][0], data[item][1], 'w' + marker_descr);
                
        elif (dimension == 3):
            if (data is None):
                axes.scatter(item[0], item[1], item[2], c = 'w', marker = marker_descr);
            else:
                axes.scatter(data[item][0], data[item][1], data[item][2], c = 'w', marker = marker_descr);
    
    axes.grid(True);
    
    if (hide_axes is True):
        axes.xaxis.set_ticklabels([]);
        axes.yaxis.set_ticklabels([]);
        
        if (dimension == 3):
            axes.zaxis.set_ticklabels([]);
    
    if (display_result is True):
        plt.show();

    return axes;


def draw_dynamics(t, dyn, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, separate = False, axes = None):
    """!
    @brief Draw dynamics of neurons (oscillators) in the network.
    @details It draws if matplotlib is not specified (None), othewise it should be performed manually.
    
    @param[in] t (list): Values of time (used by x axis).
    @param[in] dyn (list): Values of output of oscillators (used by y axis).
    @param[in] x_title (string): Title for Y.
    @param[in] y_title (string): Title for X.
    @param[in] x_lim (double): X limit.
    @param[in] y_lim (double): Y limit.
    @param[in] x_labels (bool): If True - shows X labels.
    @param[in] y_labels (bool): If True - shows Y labels.
    @param[in] separate (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage.
    @param[in] axes (ax): If specified then matplotlib axes will be used for drawing and plot will not be shown.
    
    @return (ax) Axes of matplotlib.
    
    """
         
    number_lines = 0;
    
    stage_xlim = None;
    if (x_lim is not None):
        stage_xlim = x_lim;
    elif (len(t) > 0):
        stage_xlim = [0, t[len(t) - 1]];
    
    if ( (isinstance(separate, bool) is True) and (separate is True) ):
        if (isinstance(dyn[0], list) is True):
            number_lines = len(dyn[0]);
        else:
            number_lines = 1;
            
    elif (isinstance(separate, list) is True):
        number_lines = len(separate);
        
    else:
        number_lines = 1;
    
    dysplay_result = False;
    if (axes is None):
        dysplay_result = True;
        (fig, axes) = plt.subplots(number_lines, 1);
    
    # Check if we have more than one dynamic
    if (isinstance(dyn[0], list) is True):
        num_items = len(dyn[0]);
        for index in range(0, num_items, 1):
            y = [item[index] for item in dyn];
            
            if (number_lines > 1):
                index_stage = -1;
                
                # Find required axes for the y
                if (isinstance(separate, bool) is True):
                    index_stage = index;
                    
                elif (isinstance(separate, list) is True):
                    for index_group in range(0, len(separate), 1):
                        if (index in separate[index_group]): 
                            index_stage = index_group;
                            break;
                
                if (index_stage != -1):
                    if (index_stage != number_lines - 1):
                        axes[index_stage].get_xaxis().set_visible(False);
                              
                    axes[index_stage].plot(t, y, 'b-', linewidth = 0.5); 
                    set_ax_param(axes[index_stage], x_title, y_title, stage_xlim, y_lim, x_labels, y_labels, True);
                
            else:
                axes.plot(t, y, 'b-', linewidth = 0.5);
                set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels, True);
    else:
        axes.plot(t, dyn, 'b-', linewidth = 0.5);
        set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels, True);
    
    if (dysplay_result is True):
        plt.show();
    
    return axes;


def set_ax_param(ax, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, grid = True):
    """!
    @brief Sets parameters for matplotlib ax.
    
    @param[in] ax (Axes): Axes for which parameters should applied.
    @param[in] x_title (string): Title for Y.
    @param[in] y_title (string): Title for X.
    @param[in] x_lim (double): X limit.
    @param[in] y_lim (double): Y limit.
    @param[in] x_labels (bool): If True - shows X labels.
    @param[in] y_labels (bool): If True - shows Y labels.
    @param[in] grid (bool): If True - shows grid.
    
    """
    from matplotlib.font_manager import FontProperties;
    from matplotlib import rcParams;
    
    if (_platform == "linux") or (_platform == "linux2"):
        rcParams['font.sans-serif'] = ['Liberation Serif'];
    else:
        rcParams['font.sans-serif'] = ['Arial'];
        
    rcParams['font.size'] = 12;
        
    surface_font = FontProperties();
    if (_platform == "linux") or (_platform == "linux2"):
        surface_font.set_name('Liberation Serif');
    else:
        surface_font.set_name('Arial');
        
    surface_font.set_size('12');
    
    if (y_title is not None): ax.set_ylabel(y_title, fontproperties = surface_font);
    if (x_title is not None): ax.set_xlabel(x_title, fontproperties = surface_font);
    
    if (x_lim is not None): ax.set_xlim(x_lim[0], x_lim[1]);
    if (y_lim is not None): ax.set_ylim(y_lim[0], y_lim[1]);
    
    if (x_labels is False): ax.xaxis.set_ticklabels([]);
    if (y_labels is False): ax.yaxis.set_ticklabels([]);
    
    ax.grid(grid);


def draw_dynamics_set(dynamics, xtitle = None, ytitle = None, xlim = None, ylim = None, xlabels = False, ylabels = False):
    """!
    @brief Draw lists of dynamics of neurons (oscillators) in the network.
    
    @param[in] dynamics (list): List of network outputs that are represented by values of output of oscillators (used by y axis).
    @param[in] xtitle (string): Title for Y.
    @param[in] ytitle (string): Title for X.
    @param[in] xlim (double): X limit.
    @param[in] ylim (double): Y limit.
    @param[in] xlabels (bool): If True - shows X labels.
    @param[in] ylabels (bool): If True - shows Y labels.
    
    """
    # Calculate edge for confortable representation.
    number_dynamics = len(dynamics);
    if (number_dynamics == 1):
        draw_dynamics(dynamics[0][0], dynamics[0][1], xtitle, ytitle, xlim, ylim, xlabels, ylabels);
        return;
    
    number_cols = int(numpy.ceil(number_dynamics ** 0.5));
    number_rows = int(numpy.ceil(number_dynamics / number_cols));

    real_index = 0, 0;
    double_indexer = True;
    if ( (number_cols == 1) or (number_rows == 1) ):
        real_index = 0;
        double_indexer = False;
    
    (_, axarr) = plt.subplots(number_rows, number_cols);
    #plt.setp([ax for ax in axarr], visible = False);
    
    for dynamic in dynamics:
        axarr[real_index] = draw_dynamics(dynamic[0], dynamic[1], xtitle, ytitle, xlim, ylim, xlabels, ylabels, axes = axarr[real_index]);
        #plt.setp(axarr[real_index], visible = True);
        
        if (double_indexer is True):
            real_index = real_index[0], real_index[1] + 1;
            if (real_index[1] >= number_cols):
                real_index = real_index[0] + 1, 0; 
        else:
            real_index += 1;
            
    plt.show();


def draw_image_color_segments(source, clusters, hide_axes = True):
    """!
    @brief Shows image segments using colored image.
    @details Each color on result image represents allocated segment. The first image is initial and other is result of segmentation.
    
    @param[in] source (string): Path to image.
    @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster
                                consists of indexes of pixel from source image.
    @param[in] hide_axes (bool): If True then axes will not be displayed.
    
    """
        
    image_source = Image.open(source);
    image_size = image_source.size;
    
    (fig, axarr) = plt.subplots(1, 2);
    
    plt.setp([ax for ax in axarr], visible = False);
    
    available_colors = [ (0, 162, 232),   (34, 177, 76),   (237, 28, 36),
                         (255, 242, 0),   (0, 0, 0),       (237, 28, 36),
                         (255, 174, 201), (127, 127, 127), (185, 122, 87), 
                         (200, 191, 231), (136, 0, 21),    (255, 127, 39),
                         (63, 72, 204),   (195, 195, 195), (255, 201, 14),
                         (239, 228, 176), (181, 230, 29),  (153, 217, 234),
                         (112, 146, 180) ];
    
    image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1]);
    
    for index_segment in range(len(clusters)):
        for index_pixel in clusters[index_segment]:
            image_color_segments[index_pixel] = available_colors[index_segment];
    
    stage = array(image_color_segments, numpy.uint8);
    stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),)); # ((3),) it's size of RGB - third dimension.
    image_cluster = Image.fromarray(stage, 'RGB');
    
    axarr[0].imshow(image_source, interpolation = 'none');
    axarr[1].imshow(image_cluster, interpolation = 'none');
    
    for i in range(2):
        plt.setp(axarr[i], visible = True);
        
        if (hide_axes is True):
            axarr[i].xaxis.set_ticklabels([]);
            axarr[i].yaxis.set_ticklabels([]);
            axarr[i].xaxis.set_ticks_position('none');
            axarr[i].yaxis.set_ticks_position('none');
    
    plt.show();


def draw_image_mask_segments(source, clusters, hide_axes = True):
    """!
    @brief Shows image segments using black masks.
    @details Each black mask of allocated segment is presented on separate plot.
             The first image is initial and others are black masks of segments.
    
    @param[in] source (string): Path to image.
    @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster
                                consists of indexes of pixel from source image.
    @param[in] hide_axes (bool): If True then axes will not be displayed.
    
    """
    if len(clusters) == 0:
        print("Warning: Nothing to draw - list of clusters is empty.")
        return
        
    image_source = Image.open(source)
    image_size = image_source.size
    
    # Calculate edge for confortable representation.
    number_clusters = len(clusters) + 1  # show with the source image
    
    number_cols = int(numpy.ceil(number_clusters ** 0.5))
    number_rows = int(numpy.ceil(number_clusters / number_cols))

    real_index = 0, 0
    double_indexer = True
    if (number_cols == 1) or (number_rows == 1):
        real_index = 0
        double_indexer = False
    
    (fig, axarr) = plt.subplots(number_rows, number_cols)
    plt.setp([ax for ax in axarr], visible=False)
    
    axarr[real_index].imshow(image_source, interpolation='none')
    plt.setp(axarr[real_index], visible=True)
    
    if hide_axes is True:
        axarr[real_index].xaxis.set_ticklabels([])
        axarr[real_index].yaxis.set_ticklabels([])
        axarr[real_index].xaxis.set_ticks_position('none')
        axarr[real_index].yaxis.set_ticks_position('none')
            
    if double_indexer is True:
        real_index = 0, 1
    else:
        real_index += 1
    
    for cluster in clusters:
        stage_cluster = [(255, 255, 255)] * (image_size[0] * image_size[1])
        for index in cluster:
            stage_cluster[index] = (0, 0, 0)
          
        stage = array(stage_cluster, numpy.uint8)
        stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),)) # ((3),) it's size of RGB - 3rd dimension.
        
        image_cluster = Image.fromarray(stage, 'RGB')
        
        axarr[real_index].imshow(image_cluster, interpolation = 'none')
        plt.setp(axarr[real_index], visible = True)
        
        if hide_axes is True:
            axarr[real_index].xaxis.set_ticklabels([])
            axarr[real_index].yaxis.set_ticklabels([])
            
            axarr[real_index].xaxis.set_ticks_position('none')
            axarr[real_index].yaxis.set_ticks_position('none')
        
        if double_indexer is True:
            real_index = real_index[0], real_index[1] + 1
            if real_index[1] >= number_cols:
                real_index = real_index[0] + 1, 0
        else:
            real_index += 1

    plt.show()


def find_left_element(sorted_data, right, comparator):
    """!
    @brief Returns the element's index at the left side from the right border with the same value as the
            last element in the range `sorted_data`.

    @details The element at the right is considered as target to search. `sorted_data` must
              be sorted collection. The complexity of the algorithm is `O(log(n))`. The
              algorithm is based on the binary search algorithm.

    @param[in] sorted_data: input data to find the element.
    @param[in] right: the index of the right element from that search is started.
    @param[in] comparator: comparison function object which returns `True` if the first argument
                is less than the second.

    @return The element's index at the left side from the right border with the same value as the
             last element in the range `sorted_data`.

    """
    if len(sorted_data) == 0:
        raise ValueError("Input data is empty.")

    left = 0
    middle = (right - left) // 2
    target = sorted_data[right]

    while left < right:
        if comparator(sorted_data[middle], target):
            left = middle + 1
        else:
            right = middle

        offset = (right - left) // 2
        middle = left + offset

    return left


def linear_sum(list_vector):
    """!
    @brief Calculates linear sum of vector that is represented by list, each element can be represented by list - multidimensional elements.
    
    @param[in] list_vector (list): Input vector.
    
    @return (list|double) Linear sum of vector that can be represented by list in case of multidimensional elements.
    
    """
    dimension = 1
    linear_sum = 0.0
    list_representation = (type(list_vector[0]) == list)
    
    if list_representation is True:
        dimension = len(list_vector[0])
        linear_sum = [0] * dimension
        
    for index_element in range(0, len(list_vector)):
        if list_representation is True:
            for index_dimension in range(0, dimension):
                linear_sum[index_dimension] += list_vector[index_element][index_dimension]
        else:
            linear_sum += list_vector[index_element]

    return linear_sum


def square_sum(list_vector):
    """!
    @brief Calculates square sum of vector that is represented by list, each element can be represented by list - multidimensional elements.
    
    @param[in] list_vector (list): Input vector.
    
    @return (double) Square sum of vector.
    
    """
    
    square_sum = 0.0
    list_representation = (type(list_vector[0]) == list)
        
    for index_element in range(0, len(list_vector)):
        if list_representation is True:
            square_sum += sum(list_math_multiplication(list_vector[index_element], list_vector[index_element]))
        else:
            square_sum += list_vector[index_element] * list_vector[index_element]
         
    return square_sum

    
def list_math_subtraction(a, b):
    """!
    @brief Calculates subtraction of two lists.
    @details Each element from list 'a' is subtracted by element from list 'b' accordingly.
    
    @param[in] a (list): List of elements that supports mathematical subtraction.
    @param[in] b (list): List of elements that supports mathematical subtraction.
    
    @return (list) Results of subtraction of two lists.
    
    """
    return [a[i] - b[i] for i in range(len(a))]


def list_math_substraction_number(a, b):
    """!
    @brief Calculates subtraction between list and number.
    @details Each element from list 'a' is subtracted by number 'b'.
    
    @param[in] a (list): List of elements that supports mathematical subtraction.
    @param[in] b (list): Value that supports mathematical subtraction.
    
    @return (list) Results of subtraction between list and number.
    
    """        
    return [a[i] - b for i in range(len(a))]


def list_math_addition(a, b):
    """!
    @brief Addition of two lists.
    @details Each element from list 'a' is added to element from list 'b' accordingly.
    
    @param[in] a (list): List of elements that supports mathematic addition..
    @param[in] b (list): List of elements that supports mathematic addition..
    
    @return (list) Results of addtion of two lists.
    
    """    
    return [a[i] + b[i] for i in range(len(a))]


def list_math_addition_number(a, b):
    """!
    @brief Addition between list and number.
    @details Each element from list 'a' is added to number 'b'.
    
    @param[in] a (list): List of elements that supports mathematic addition.
    @param[in] b (double): Value that supports mathematic addition.
    
    @return (list) Result of addtion of two lists.
    
    """    
    return [a[i] + b for i in range(len(a))]


def list_math_division_number(a, b):
    """!
    @brief Division between list and number.
    @details Each element from list 'a' is divided by number 'b'.
    
    @param[in] a (list): List of elements that supports mathematic division.
    @param[in] b (double): Value that supports mathematic division.
    
    @return (list) Result of division between list and number.
    
    """    
    return [a[i] / b for i in range(len(a))]


def list_math_division(a, b):
    """!
    @brief Division of two lists.
    @details Each element from list 'a' is divided by element from list 'b' accordingly.
    
    @param[in] a (list): List of elements that supports mathematic division.
    @param[in] b (list): List of elements that supports mathematic division.
    
    @return (list) Result of division of two lists.
    
    """    
    return [a[i] / b[i] for i in range(len(a))]


def list_math_multiplication_number(a, b):
    """!
    @brief Multiplication between list and number.
    @details Each element from list 'a' is multiplied by number 'b'.
    
    @param[in] a (list): List of elements that supports mathematic division.
    @param[in] b (double): Number that supports mathematic division.
    
    @return (list) Result of division between list and number.
    
    """    
    return [a[i] * b for i in range(len(a))]


def list_math_multiplication(a, b):
    """!
    @brief Multiplication of two lists.
    @details Each element from list 'a' is multiplied by element from list 'b' accordingly.
    
    @param[in] a (list): List of elements that supports mathematic multiplication.
    @param[in] b (list): List of elements that supports mathematic multiplication.
    
    @return (list) Result of multiplication of elements in two lists.
    
    """        
    return [a[i] * b[i] for i in range(len(a))]