1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
"""!
@brief Module provides various distance metrics - abstraction of the notion of distance in a metric space.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import numpy
from enum import IntEnum
class type_metric(IntEnum):
"""!
@brief Enumeration of supported metrics in the module for distance calculation between two points.
"""
## Euclidean distance, for more information see function 'euclidean_distance'.
EUCLIDEAN = 0
## Square Euclidean distance, for more information see function 'euclidean_distance_square'.
EUCLIDEAN_SQUARE = 1
## Manhattan distance, for more information see function 'manhattan_distance'.
MANHATTAN = 2
## Chebyshev distance, for more information see function 'chebyshev_distance'.
CHEBYSHEV = 3
## Minkowski distance, for more information see function 'minkowski_distance'.
MINKOWSKI = 4
## Canberra distance, for more information see function 'canberra_distance'.
CANBERRA = 5
## Chi square distance, for more information see function 'chi_square_distance'.
CHI_SQUARE = 6
## Gower distance, for more information see function 'gower_distance'.
GOWER = 7
## User defined function for distance calculation between two points.
USER_DEFINED = 1000
class distance_metric:
"""!
@brief Distance metric performs distance calculation between two points in line with encapsulated function, for
example, euclidean distance or chebyshev distance, or even user-defined.
@details
Example of Euclidean distance metric:
@code
metric = distance_metric(type_metric.EUCLIDEAN)
distance = metric([1.0, 2.5], [-1.2, 3.4])
@endcode
Example of Chebyshev distance metric:
@code
metric = distance_metric(type_metric.CHEBYSHEV)
distance = metric([0.0, 0.0], [2.5, 6.0])
@endcode
In following example additional argument should be specified (generally, 'degree' is a optional argument that is
equal to '2' by default) that is specific for Minkowski distance:
@code
metric = distance_metric(type_metric.MINKOWSKI, degree=4)
distance = metric([4.0, 9.2, 1.0], [3.4, 2.5, 6.2])
@endcode
User may define its own function for distance calculation. In this case input is two points, for example, you
want to implement your own version of Manhattan distance:
@code
from pyclustering.utils.metric import distance_metric, type_metric
def my_manhattan(point1, point2):
dimension = len(point1)
result = 0.0
for i in range(dimension):
result += abs(point1[i] - point2[i]) * 0.1
return result
metric = distance_metric(type_metric.USER_DEFINED, func=my_manhattan)
distance = metric([2.0, 3.0], [1.0, 3.0])
@endcode
"""
def __init__(self, metric_type, **kwargs):
"""!
@brief Creates distance metric instance for calculation distance between two points.
@param[in] metric_type (type_metric):
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'numpy_usage' 'func' and corresponding additional argument for
for specific metric types).
<b>Keyword Args:</b><br>
- func (callable): Callable object with two arguments (point #1 and point #2) or (object #1 and object #2) in case of numpy usage.
This argument is used only if metric is 'type_metric.USER_DEFINED'.
- degree (numeric): Only for 'type_metric.MINKOWSKI' - degree of Minkowski equation.
- max_range (array_like): Only for 'type_metric.GOWER' - max range in each dimension. 'data' can be used
instead of this parameter.
- data (array_like): Only for 'type_metric.GOWER' - input data that used for 'max_range' calculation.
'max_range' can be used instead of this parameter.
- numpy_usage (bool): If True then numpy is used for calculation (by default is False).
"""
self.__type = metric_type
self.__args = kwargs
self.__func = self.__args.get('func', None)
self.__numpy = self.__args.get('numpy_usage', False)
self.__calculator = self.__create_distance_calculator()
def __call__(self, point1, point2):
"""!
@brief Calculates distance between two points.
@param[in] point1 (list): The first point.
@param[in] point2 (list): The second point.
@return (double) Distance between two points.
"""
return self.__calculator(point1, point2)
def get_type(self):
"""!
@brief Return type of distance metric that is used.
@return (type_metric) Type of distance metric.
"""
return self.__type
def get_arguments(self):
"""!
@brief Return additional arguments that are used by distance metric.
@return (dict) Additional arguments.
"""
return self.__args
def get_function(self):
"""!
@brief Return user-defined function for calculation distance metric.
@return (callable): User-defined distance metric function.
"""
return self.__func
def enable_numpy_usage(self):
"""!
@brief Start numpy for distance calculation.
@details Useful in case matrices to increase performance. No effect in case of type_metric.USER_DEFINED type.
"""
self.__numpy = True
if self.__type != type_metric.USER_DEFINED:
self.__calculator = self.__create_distance_calculator()
def disable_numpy_usage(self):
"""!
@brief Stop using numpy for distance calculation.
@details Useful in case of big amount of small data portion when numpy call is longer than calculation itself.
No effect in case of type_metric.USER_DEFINED type.
"""
self.__numpy = False
self.__calculator = self.__create_distance_calculator()
def __create_distance_calculator(self):
"""!
@brief Creates distance metric calculator.
@return (callable) Callable object of distance metric calculator.
"""
if self.__numpy is True:
return self.__create_distance_calculator_numpy()
return self.__create_distance_calculator_basic()
def __create_distance_calculator_basic(self):
"""!
@brief Creates distance metric calculator that does not use numpy.
@return (callable) Callable object of distance metric calculator.
"""
if self.__type == type_metric.EUCLIDEAN:
return euclidean_distance
elif self.__type == type_metric.EUCLIDEAN_SQUARE:
return euclidean_distance_square
elif self.__type == type_metric.MANHATTAN:
return manhattan_distance
elif self.__type == type_metric.CHEBYSHEV:
return chebyshev_distance
elif self.__type == type_metric.MINKOWSKI:
return lambda point1, point2: minkowski_distance(point1, point2, self.__args.get('degree', 2))
elif self.__type == type_metric.CANBERRA:
return canberra_distance
elif self.__type == type_metric.CHI_SQUARE:
return chi_square_distance
elif self.__type == type_metric.GOWER:
max_range = self.__get_gower_max_range()
return lambda point1, point2: gower_distance(point1, point2, max_range)
elif self.__type == type_metric.USER_DEFINED:
return self.__func
else:
raise ValueError("Unknown type of metric: '%d'", self.__type)
def __get_gower_max_range(self):
"""!
@brief Returns max range for Gower distance using input parameters ('max_range' or 'data').
@return (numpy.array) Max range for Gower distance.
"""
max_range = self.__args.get('max_range', None)
if max_range is None:
data = self.__args.get('data', None)
if data is None:
raise ValueError("Gower distance requires 'data' or 'max_range' argument to construct metric.")
max_range = numpy.max(data, axis=0) - numpy.min(data, axis=0)
self.__args['max_range'] = max_range
return max_range
def __create_distance_calculator_numpy(self):
"""!
@brief Creates distance metric calculator that uses numpy.
@return (callable) Callable object of distance metric calculator.
"""
if self.__type == type_metric.EUCLIDEAN:
return euclidean_distance_numpy
elif self.__type == type_metric.EUCLIDEAN_SQUARE:
return euclidean_distance_square_numpy
elif self.__type == type_metric.MANHATTAN:
return manhattan_distance_numpy
elif self.__type == type_metric.CHEBYSHEV:
return chebyshev_distance_numpy
elif self.__type == type_metric.MINKOWSKI:
return lambda object1, object2: minkowski_distance_numpy(object1, object2, self.__args.get('degree', 2))
elif self.__type == type_metric.CANBERRA:
return canberra_distance_numpy
elif self.__type == type_metric.CHI_SQUARE:
return chi_square_distance_numpy
elif self.__type == type_metric.GOWER:
max_range = self.__get_gower_max_range()
return lambda object1, object2: gower_distance_numpy(object1, object2, max_range)
elif self.__type == type_metric.USER_DEFINED:
return self.__func
else:
raise ValueError("Unknown type of metric: '%d'", self.__type)
def euclidean_distance(point1, point2):
"""!
@brief Calculate Euclidean distance between two vectors.
@details The Euclidean between vectors (points) a and b is calculated by following formula:
\f[
dist(a, b) = \sqrt{ \sum_{i=0}^{N}(a_{i} - b_{i})^{2} };
\f]
Where N is a length of each vector.
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (double) Euclidean distance between two vectors.
@see euclidean_distance_square, manhattan_distance, chebyshev_distance
"""
distance = euclidean_distance_square(point1, point2)
return distance ** 0.5
def euclidean_distance_numpy(object1, object2):
"""!
@brief Calculate Euclidean distance between two objects using numpy.
@param[in] object1 (array_like): The first array_like object.
@param[in] object2 (array_like): The second array_like object.
@return (double) Euclidean distance between two objects.
"""
if len(object1.shape) > 1 or len(object2.shape) > 1:
return numpy.sqrt(numpy.sum(numpy.square(object1 - object2), axis=1))
else:
return numpy.sqrt(numpy.sum(numpy.square(object1 - object2)))
def euclidean_distance_square(point1, point2):
"""!
@brief Calculate square Euclidean distance between two vectors.
\f[
dist(a, b) = \sum_{i=0}^{N}(a_{i} - b_{i})^{2};
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (double) Square Euclidean distance between two vectors.
@see euclidean_distance, manhattan_distance, chebyshev_distance
"""
distance = 0.0
for i in range(len(point1)):
distance += (point1[i] - point2[i]) ** 2.0
return distance
def euclidean_distance_square_numpy(object1, object2):
"""!
@brief Calculate square Euclidean distance between two objects using numpy.
@param[in] object1 (array_like): The first array_like object.
@param[in] object2 (array_like): The second array_like object.
@return (double) Square Euclidean distance between two objects.
"""
if len(object1.shape) > 1 or len(object2.shape) > 1:
return numpy.sum(numpy.square(object1 - object2), axis=1).T
else:
return numpy.sum(numpy.square(object1 - object2))
def manhattan_distance(point1, point2):
"""!
@brief Calculate Manhattan distance between between two vectors.
\f[
dist(a, b) = \sum_{i=0}^{N}\left | a_{i} - b_{i} \right |;
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (double) Manhattan distance between two vectors.
@see euclidean_distance_square, euclidean_distance, chebyshev_distance
"""
distance = 0.0
dimension = len(point1)
for i in range(dimension):
distance += abs(point1[i] - point2[i])
return distance
def manhattan_distance_numpy(object1, object2):
"""!
@brief Calculate Manhattan distance between two objects using numpy.
@param[in] object1 (array_like): The first array_like object.
@param[in] object2 (array_like): The second array_like object.
@return (double) Manhattan distance between two objects.
"""
if len(object1.shape) > 1 or len(object2.shape) > 1:
return numpy.sum(numpy.absolute(object1 - object2), axis=1).T
else:
return numpy.sum(numpy.absolute(object1 - object2))
def chebyshev_distance(point1, point2):
"""!
@brief Calculate Chebyshev distance (maximum metric) between between two vectors.
@details Chebyshev distance is a metric defined on a vector space where the distance between two vectors is the
greatest of their differences along any coordinate dimension.
\f[
dist(a, b) = \max_{}i\left (\left | a_{i} - b_{i} \right |\right );
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (double) Chebyshev distance between two vectors.
@see euclidean_distance_square, euclidean_distance, minkowski_distance
"""
distance = 0.0
dimension = len(point1)
for i in range(dimension):
distance = max(distance, abs(point1[i] - point2[i]))
return distance
def chebyshev_distance_numpy(object1, object2):
"""!
@brief Calculate Chebyshev distance between two objects using numpy.
@param[in] object1 (array_like): The first array_like object.
@param[in] object2 (array_like): The second array_like object.
@return (double) Chebyshev distance between two objects.
"""
if len(object1.shape) > 1 or len(object2.shape) > 1:
return numpy.max(numpy.absolute(object1 - object2), axis=1).T
else:
return numpy.max(numpy.absolute(object1 - object2))
def minkowski_distance(point1, point2, degree=2):
"""!
@brief Calculate Minkowski distance between two vectors.
\f[
dist(a, b) = \sqrt[p]{ \sum_{i=0}^{N}\left(a_{i} - b_{i}\right)^{p} };
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@param[in] degree (numeric): Degree of that is used for Minkowski distance.
@return (double) Minkowski distance between two vectors.
@see euclidean_distance
"""
distance = 0.0
for i in range(len(point1)):
distance += (point1[i] - point2[i]) ** degree
return distance ** (1.0 / degree)
def minkowski_distance_numpy(object1, object2, degree=2):
"""!
@brief Calculate Minkowski distance between objects using numpy.
@param[in] object1 (array_like): The first array_like object.
@param[in] object2 (array_like): The second array_like object.
@param[in] degree (numeric): Degree of that is used for Minkowski distance.
@return (double) Minkowski distance between two object.
"""
if len(object1.shape) > 1 or len(object2.shape) > 1:
return numpy.power(numpy.sum(numpy.power(object1 - object2, degree), axis=1), 1/degree)
else:
return numpy.power(numpy.sum(numpy.power(object1 - object2, degree)), 1 / degree)
def canberra_distance(point1, point2):
"""!
@brief Calculate Canberra distance between two vectors.
\f[
dist(a, b) = \sum_{i=0}^{N}\frac{\left | a_{i} - b_{i} \right |}{\left | a_{i} \right | + \left | b_{i} \right |};
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (float) Canberra distance between two objects.
"""
distance = 0.0
for i in range(len(point1)):
divider = abs(point1[i]) + abs(point2[i])
if divider == 0.0:
continue
distance += abs(point1[i] - point2[i]) / divider
return distance
def canberra_distance_numpy(object1, object2):
"""!
@brief Calculate Canberra distance between two objects using numpy.
@param[in] object1 (array_like): The first vector.
@param[in] object2 (array_like): The second vector.
@return (float) Canberra distance between two objects.
"""
with numpy.errstate(divide='ignore', invalid='ignore'):
result = numpy.divide(numpy.abs(object1 - object2), numpy.abs(object1) + numpy.abs(object2))
if len(result.shape) > 1:
return numpy.sum(numpy.nan_to_num(result), axis=1).T
else:
return numpy.sum(numpy.nan_to_num(result))
def chi_square_distance(point1, point2):
"""!
@brief Calculate Chi square distance between two vectors.
\f[
dist(a, b) = \sum_{i=0}^{N}\frac{\left ( a_{i} - b_{i} \right )^{2}}{\left | a_{i} \right | + \left | b_{i} \right |};
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@return (float) Chi square distance between two objects.
"""
distance = 0.0
for i in range(len(point1)):
divider = abs(point1[i]) + abs(point2[i])
if divider != 0.0:
distance += ((point1[i] - point2[i]) ** 2.0) / divider
return distance
def chi_square_distance_numpy(object1, object2):
"""!
@brief Calculate Chi square distance between two vectors using numpy.
@param[in] object1 (array_like): The first vector.
@param[in] object2 (array_like): The second vector.
@return (float) Chi square distance between two objects.
"""
with numpy.errstate(divide='ignore', invalid='ignore'):
result = numpy.divide(numpy.power(object1 - object2, 2), numpy.abs(object1) + numpy.abs(object2))
if len(result.shape) > 1:
return numpy.sum(numpy.nan_to_num(result), axis=1).T
else:
return numpy.sum(numpy.nan_to_num(result))
def gower_distance(point1, point2, max_range):
"""!
@brief Calculate Gower distance between two vectors.
@details Implementation is based on the paper @cite article::utils::metric::gower. Gower distance is calculate
using following formula:
\f[
dist\left ( a, b \right )=\frac{1}{p}\sum_{i=0}^{p}\frac{\left | a_{i} - b_{i} \right |}{R_{i}},
\f]
where \f$R_{i}\f$ is a max range for ith dimension. \f$R\f$ is defined in line following formula:
\f[
R=max\left ( X \right )-min\left ( X \right )
\f]
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@param[in] max_range (array_like): Max range in each data dimension.
@return (float) Gower distance between two objects.
"""
distance = 0.0
dimensions = len(point1)
for i in range(dimensions):
if max_range[i] != 0.0:
distance += abs(point1[i] - point2[i]) / max_range[i]
return distance / dimensions
def gower_distance_numpy(point1, point2, max_range):
"""!
@brief Calculate Gower distance between two vectors using numpy.
@param[in] point1 (array_like): The first vector.
@param[in] point2 (array_like): The second vector.
@param[in] max_range (array_like): Max range in each data dimension.
@return (float) Gower distance between two objects.
"""
with numpy.errstate(divide='ignore', invalid='ignore'):
result = numpy.divide(numpy.abs(point1 - point2), max_range)
if len(result.shape) > 1:
return numpy.sum(numpy.nan_to_num(result), axis=1).T / len(result[0])
else:
return numpy.sum(numpy.nan_to_num(result)) / len(point1)
|