File: cm1_filtered2.html

package info (click to toggle)
python-pycm 4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,952 kB
  • sloc: python: 5,029; sh: 8; makefile: 6
file content (91 lines) | stat: -rw-r--r-- 5,572 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<!doctype html>
<html lang="en">
<head>
<title>PyCM Report</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="PyCM is a multi-class confusion matrix library written in Python. http://www.pycm.io">
<meta name="og:title" content="PyCM Report">
<meta name="og:description" content="PyCM is a multi-class confusion matrix library written in Python. http://www.pycm.io">
<meta name="og:url" content="http://www.pycm.io">
<meta property="og:image" content="http://www.pycm.io/images/logo-og.png">
<meta name="twitter:image:src" content="http://www.pycm.io/images/logo-og.png">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="PyCM Report">
<meta name="twitter:description" content="PyCM is a multi-class confusion matrix library written in Python. http://www.pycm.io">
</head>
<body>
<h1 style="border-bottom:1px solid black;text-align:center;">PyCM Report</h1>
<h2>Dataset Type : </h2>
<ul>
<li>Balanced</li>
<li>Multi-Class Classification</li>
</ul>
<p><span style="color:red;">Note 1</span> : Recommended statistics for this type of classification highlighted in <span style="color :aqua;">aqua</span></p>
<p><span style="color:red;">Note 2</span> : The recommendation system assumes the input is the result of classification over the entire dataset, not just a subset. If the confusion matrix is based on test data classification, the recommendation may not be valid.</p>
<h2>Confusion Matrix : </h2>
<table>
<tr style="text-align:center;">
<td>Actual</td>
<td>Predict
<table style="border:1px solid black;border-collapse: collapse;height:28em;width:28em;">
<tr style="text-align:center;">
<td></td>
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L1</td>
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L2</td>
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L3</td>
</tr>
<tr style="text-align:center;">
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L1</td>
<td style="background-color:rgb(128,128,128);color:black;padding:10px;height:7em;width:7em;">3</td>
<td style="background-color:rgb(255,255,255);color:black;padding:10px;height:7em;width:7em;">0</td>
<td style="background-color:rgb(170,170,170);color:black;padding:10px;height:7em;width:7em;">2</td>
</tr>
<tr style="text-align:center;">
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L2</td>
<td style="background-color:rgb(255,255,255);color:black;padding:10px;height:7em;width:7em;">0</td>
<td style="background-color:rgb(170,170,170);color:black;padding:10px;height:7em;width:7em;">1</td>
<td style="background-color:rgb(170,170,170);color:black;padding:10px;height:7em;width:7em;">1</td>
</tr>
<tr style="text-align:center;">
<td style="border:1px solid black;padding:10px;height:7em;width:7em;">L3</td>
<td style="background-color:rgb(255,255,255);color:black;padding:10px;height:7em;width:7em;">0</td>
<td style="background-color:rgb(170,170,170);color:black;padding:10px;height:7em;width:7em;">2</td>
<td style="background-color:rgb(128,128,128);color:black;padding:10px;height:7em;width:7em;">3</td>
</tr>
</table>
</td>
</tr>
</table>
<h2>Overall Statistics : </h2>
<table style="border:1px solid black;border-collapse: collapse;">
<tr style="text-align:center;">
<td style="border:1px solid black;padding:4px;text-align:left;background-color:transparent;"><a href="http://www.pycm.io/doc/index.html#Kappa" style="text-decoration:None;">Kappa</a></td>
<td style="border:1px solid black;padding:4px;">0.35484</td>
</tr>
</table>
<h2>Class Statistics : </h2>
<table style="border:1px solid black;border-collapse: collapse;">
<tr style="text-align:center;">
<td>Class</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">L1</td>
<td>Description</td>
</tr>
<tr style="text-align:center;border:1px solid black;border-collapse: collapse;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;background-color:aqua;"><a href="http://www.pycm.io/doc/index.html#ACC-(Accuracy)" style="text-decoration:None;">ACC</a></td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">0.83333</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;text-align:left;">Accuracy</td>
</tr>
<tr style="text-align:center;border:1px solid black;border-collapse: collapse;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;background-color:transparent;"><a href="http://www.pycm.io/doc/index.html#AUC-(Area-under-the-ROC-curve)" style="text-decoration:None;">AUC</a></td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">0.8</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;text-align:left;">Area under the ROC curve</td>
</tr>
<tr style="text-align:center;border:1px solid black;border-collapse: collapse;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;background-color:transparent;"><a href="http://www.pycm.io/doc/index.html#TPR-(True-positive-rate)" style="text-decoration:None;">TPR</a></td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">0.6</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;text-align:left;">Sensitivity, recall, hit rate, or true positive rate</td>
</tr>
</table>
<p style="text-align:center;border-top:1px solid black;">Generated By <a href="http://www.pycm.io" style="text-decoration:none;color:red;">PyCM</a> Version 4.3</p>
</body>
</html>