1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
Matrix :
Predict L1 L2 L3
Actual
L1 3 0 2
L2 0 1 1
L3 0 2 3
Normalized Matrix :
Predict L1 L2 L3
Actual
L1 0.6 0.0 0.4
L2 0.0 0.5 0.5
L3 0.0 0.4 0.6
Overall Statistics :
ACC Macro 0.72222
F1 Macro 0.56515
FPR Macro 0.20952
Kappa 0.35484
NPV Macro 0.77778
Overall ACC 0.58333
PPV Macro 0.61111
SOA1(Landis & Koch) Fair
TPR Macro 0.56667
Zero-one Loss 5
Class Statistics :
Classes L1 L2 L3
ACC(Accuracy) 0.83333 0.75 0.58333
AUC(Area under the ROC curve) 0.8 0.65 0.58571
AUCI(AUC value interpretation) Very Good Fair Poor
F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545
FN(False negative/miss/type 2 error) 2 1 2
FP(False positive/type 1 error/false alarm) 0 2 3
FPR(Fall-out or false positive rate) 0.0 0.2 0.42857
N(Condition negative) 7 10 7
P(Condition positive or support) 5 2 5
POP(Population) 12 12 12
PPV(Precision or positive predictive value) 1.0 0.33333 0.5
TN(True negative/correct rejection) 7 8 4
TON(Test outcome negative) 9 9 6
TOP(Test outcome positive) 3 3 6
TP(True positive/hit) 3 1 3
TPR(Sensitivity, recall, hit rate, or true positive rate) 0.6 0.5 0.6
One-Vs-All :
L1-Vs-All :
Predict L1 ~
Actual
L1 3 2
~ 0 7
L2-Vs-All :
Predict L2 ~
Actual
L2 1 1
~ 2 8
L3-Vs-All :
Predict L3 ~
Actual
L3 3 2
~ 3 4
|