1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
<div align="center">
<img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/logo.png" width="550">
<h1>PyCM: Python Confusion Matrix</h1>
<br/>
<a href="https://www.python.org/"><img src="https://img.shields.io/badge/built%20with-Python3-green.svg" alt="built with Python3"></a>
<a href="https://github.com/sepandhaghighi/pycm"><img alt="GitHub repo size" src="https://img.shields.io/github/repo-size/sepandhaghighi/pycm"></a>
<a href="/Document"><img src="https://img.shields.io/badge/doc-latest-orange.svg"></a>
<a href="https://codecov.io/gh/sepandhaghighi/pycm"><img src="https://codecov.io/gh/sepandhaghighi/pycm/branch/master/graph/badge.svg"></a>
<a href="https://badge.fury.io/py/pycm"><img src="https://badge.fury.io/py/pycm.svg" alt="PyPI version"></a>
<a href="https://anaconda.org/sepandhaghighi/pycm"><img src="https://anaconda.org/sepandhaghighi/pycm/badges/version.svg"></a>
<a href="https://colab.research.google.com/github/sepandhaghighi/pycm/blob/master"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Document"></a>
<a href="https://discord.com/invite/zqpU2b3J3f"><img src="https://img.shields.io/discord/901883546162065408.svg" alt="Discord Channel"></a>
</div>
## Overview
<p align="justify">
PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters.
PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and accurate evaluation of a large variety of classifiers.
</p>
<div align="center">
<img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/block_diagram.jpg" width="700">
<p>Fig1. ConfusionMatrix Block Diagram</p>
</div>
<table>
<tr>
<td align="center">Open Hub</td>
<td align="center"><a href="https://www.openhub.net/p/pycm"><img src="https://www.openhub.net/p/pycm/widgets/project_thin_badge.gif"></a></td>
</tr>
<tr>
<td align="center">PyPI Counter</td>
<td align="center"><a href="https://pepy.tech/projects/pycm"><img src="https://static.pepy.tech/badge/pycm" alt="PyPI Downloads"></a></td>
</tr>
<tr>
<td align="center">Github Stars</td>
<td align="center"><a href="https://github.com/sepandhaghighi/pycm"><img src="https://img.shields.io/github/stars/sepandhaghighi/pycm.svg?style=social&label=Stars"></a></td>
</tr>
</table>
<table>
<tr>
<td align="center">Branch</td>
<td align="center">master</td>
<td align="center">dev</td>
</tr>
<tr>
<td align="center">CI</td>
<td align="center"><img src="https://github.com/sepandhaghighi/pycm/actions/workflows/test.yml/badge.svg?branch=master"></td>
<td align="center"><img src="https://github.com/sepandhaghighi/pycm/actions/workflows/test.yml/badge.svg?branch=dev"></td>
</tr>
</table>
<table>
<tr>
<td align="center">Code Quality</td>
<td align="center"><a class="badge-align" href="https://www.codacy.com/app/sepand-haghighi/pycm?utm_source=github.com&utm_medium=referral&utm_content=sepandhaghighi/pycm&utm_campaign=Badge_Grade"><img src="https://api.codacy.com/project/badge/Grade/5d9463998a0040d09afc2b80c389365c"/></a></td>
<td align="center"><a href="https://www.codefactor.io/repository/github/sepandhaghighi/pycm/overview/dev"><img src="https://www.codefactor.io/repository/github/sepandhaghighi/pycm/badge/dev" alt="CodeFactor" /></a></td>
<td align="center"><a href="https://codebeat.co/projects/github-com-sepandhaghighi-pycm-dev"><img alt="codebeat badge" src="https://codebeat.co/badges/f6642af1-c343-48c2-bd3e-eee802facf39" /></a></td>
</tr>
</table>
## Installation
⚠️ PyCM 3.9 is the last version to support **Python 3.5**
⚠️ PyCM 2.4 is the last version to support **Python 2.7** & **Python 3.4**
⚠️ Plotting capability requires **Matplotlib (>= 3.0.0)** or **Seaborn (>= 0.9.1)**
### PyPI
- Check [Python Packaging User Guide](https://packaging.python.org/installing/)
- Run `pip install pycm==4.3`
### Source code
- Download [Version 4.3](https://github.com/sepandhaghighi/pycm/archive/v4.3.zip) or [Latest Source](https://github.com/sepandhaghighi/pycm/archive/dev.zip)
- Run `pip install .`
### Conda
- Check [Conda Managing Package](https://conda.io/)
- Update Conda using `conda update conda`
- Run `conda install -c sepandhaghighi pycm`
### MATLAB
- Download and install [MATLAB](https://www.mathworks.com/products/matlab.html) (>=8.5, 64/32 bit)
- Download and install [Python3.x](https://www.python.org/downloads/) (>=3.6, 64/32 bit)
- [x] Select `Add to PATH` option
- [x] Select `Install pip` option
- Run `pip install pycm`
- Configure Python interpreter
```matlab
>> pyversion PYTHON_EXECUTABLE_FULL_PATH
```
- Visit [MATLAB Examples](https://github.com/sepandhaghighi/pycm/tree/master/MATLAB)
## Usage
### From vector
```pycon
>>> from pycm import *
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
>>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred)
>>> cm.classes
[0, 1, 2]
>>> cm.table
{0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
>>> cm.print_matrix()
Predict 0 1 2
Actual
0 3 0 0
1 0 1 2
2 2 1 3
>>> cm.print_normalized_matrix()
Predict 0 1 2
Actual
0 1.0 0.0 0.0
1 0.0 0.33333 0.66667
2 0.33333 0.16667 0.5
>>> cm.stat(summary=True)
Overall Statistics :
ACC Macro 0.72222
F1 Macro 0.56515
FPR Macro 0.22222
Kappa 0.35484
Overall ACC 0.58333
PPV Macro 0.56667
SOA1(Landis & Koch) Fair
TPR Macro 0.61111
Zero-one Loss 5
Class Statistics :
Classes 0 1 2
ACC(Accuracy) 0.83333 0.75 0.58333
AUC(Area under the ROC curve) 0.88889 0.61111 0.58333
AUCI(AUC value interpretation) Very Good Fair Poor
F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545
FN(False negative/miss/type 2 error) 0 2 3
FP(False positive/type 1 error/false alarm) 2 1 2
FPR(Fall-out or false positive rate) 0.22222 0.11111 0.33333
N(Condition negative) 9 9 6
P(Condition positive or support) 3 3 6
POP(Population) 12 12 12
PPV(Precision or positive predictive value) 0.6 0.5 0.6
TN(True negative/correct rejection) 7 8 4
TON(Test outcome negative) 7 10 7
TOP(Test outcome positive) 5 2 5
TP(True positive/hit) 3 1 3
TPR(Sensitivity, recall, hit rate, or true positive rate) 1.0 0.33333 0.5
```
### Direct CM
```pycon
>>> from pycm import *
>>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2": 2}, "Class2": {"Class1": 0, "Class2": 5}})
>>> cm2
pycm.ConfusionMatrix(classes: ['Class1', 'Class2'])
>>> cm2.classes
['Class1', 'Class2']
>>> cm2.print_matrix()
Predict Class1 Class2
Actual
Class1 1 2
Class2 0 5
>>> cm2.print_normalized_matrix()
Predict Class1 Class2
Actual
Class1 0.33333 0.66667
Class2 0.0 1.0
>>> cm2.stat(summary=True)
Overall Statistics :
ACC Macro 0.75
F1 Macro 0.66667
FPR Macro 0.33333
Kappa 0.38462
Overall ACC 0.75
PPV Macro 0.85714
SOA1(Landis & Koch) Fair
TPR Macro 0.66667
Zero-one Loss 2
Class Statistics :
Classes Class1 Class2
ACC(Accuracy) 0.75 0.75
AUC(Area under the ROC curve) 0.66667 0.66667
AUCI(AUC value interpretation) Fair Fair
F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333
FN(False negative/miss/type 2 error) 2 0
FP(False positive/type 1 error/false alarm) 0 2
FPR(Fall-out or false positive rate) 0.0 0.66667
N(Condition negative) 5 3
P(Condition positive or support) 3 5
POP(Population) 8 8
PPV(Precision or positive predictive value) 1.0 0.71429
TN(True negative/correct rejection) 5 1
TON(Test outcome negative) 7 1
TOP(Test outcome positive) 1 7
TP(True positive/hit) 1 5
TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0
```
* `matrix()` and `normalized_matrix()` renamed to `print_matrix()` and `print_normalized_matrix()` in `version 1.5`
### Activation threshold
`threshold` is added in `version 0.9` for real value prediction.
For more information visit [Example3](http://www.pycm.io/doc/Example3.html "Example3")
### Load from file
`file` is added in `version 0.9.5` in order to load saved confusion matrix with `.obj` format generated by `save_obj` method.
For more information visit [Example4](http://www.pycm.io/doc/Example4.html "Example4")
### Sample weights
`sample_weight` is added in `version 1.2`
For more information visit [Example5](http://www.pycm.io/doc/Example5.html "Example5")
### Transpose
`transpose` is added in `version 1.2` in order to transpose input matrix (only in `Direct CM` mode)
### Relabel
`relabel` method is added in `version 1.5` in order to change ConfusionMatrix classnames.
```pycon
>>> cm.relabel(mapping={0: "L1", 1: "L2", 2: "L3"})
>>> cm
pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3'])
```
### Position
`position` method is added in `version 2.8` in order to find the indexes of observations in `predict_vector` which made TP, TN, FP, FN.
```pycon
>>> cm.position()
{0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}}
```
### To array
`to_array` method is added in `version 2.9` in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination.
```pycon
>>> cm.to_array()
array([[3, 0, 0],
[0, 1, 2],
[2, 1, 3]])
>>> cm.to_array(normalized=True)
array([[1. , 0. , 0. ],
[0. , 0.33333, 0.66667],
[0.33333, 0.16667, 0.5 ]])
>>> cm.to_array(normalized=True, one_vs_all=True, class_name="L1")
array([[1. , 0. ],
[0.22222, 0.77778]])
```
### Combine
`combine` method is added in `version 3.0` in order to merge two confusion matrices. This option will be useful in mini-batch learning.
```pycon
>>> cm_combined = cm2.combine(cm3)
>>> cm_combined.print_matrix()
Predict Class1 Class2
Actual
Class1 2 4
Class2 0 10
```
### Plot
`plot` method is added in `version 3.0` in order to plot a confusion matrix using Matplotlib or Seaborn.
```pycon
>>> cm.plot()
```
<img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/plot1.png">
```pycon
>>> from matplotlib import pyplot as plt
>>> cm.plot(cmap=plt.cm.Greens, number_label=True, plot_lib="matplotlib")
```
<img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/plot2.png">
```pycon
>>> cm.plot(cmap=plt.cm.Reds, normalized=True, number_label=True, plot_lib="seaborn")
```
<img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/plot3.png">
### ROC curve
`ROCCurve`, added in `version 3.7`, is devised to compute the Receiver Operating Characteristic (ROC) or simply ROC curve. In ROC curves, the Y axis represents the True Positive Rate, and the X axis represents the False Positive Rate. Thus, the ideal point is located at the top left of the curve, and a larger area under the curve represents better performance. ROC curve is a graphical representation of binary classifiers' performance. In PyCM, `ROCCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of ROC for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot TPR-FPR pairs for different discrimination thresholds and compute the area under the ROC curve.
```pycon
>>> crv = ROCCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1])
>>> crv.thresholds
[0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9]
>>> auc_trp = crv.area()
>>> auc_trp[1]
0.75
>>> auc_trp[2]
0.75
```
### Precision-Recall curve
`PRCurve`, added in `version 3.7`, is devised to compute the Precision-Recall curve in which the Y axis represents the Precision, and the X axis represents the Recall of a classifier. Thus, the ideal point is located at the top right of the curve, and a larger area under the curve represents better performance. Precision-Recall curve is a graphical representation of binary classifiers' performance. In PyCM, `PRCurve` binarizes the output based on the "One vs. Rest" strategy to provide an extension of this curve for multi-class classifiers. Getting the actual labels vector, the target probability estimates of the positive classes, and the list of ordered labels of classes, this method is able to compute and plot Precision-Recall pairs for different discrimination thresholds and compute the area under the curve.
```pycon
>>> crv = PRCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1])
>>> crv.thresholds
[0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9]
>>> auc_trp = crv.area()
>>> auc_trp[1]
0.29166666666666663
>>> auc_trp[2]
0.29166666666666663
```
### Parameter recommender
This option has been added in `version 1.9` to recommend the most related parameters considering the characteristics of the input dataset.
The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class.
All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset.
The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper.
```pycon
>>> cm.imbalance
False
>>> cm.binary
False
>>> cm.recommended_list
['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC']
```
`is_imbalanced` parameter has been added in `version 3.3`, so the user can indicate whether the concerned dataset is imbalanced or not. As long as the user does not provide any information in this regard, the automatic detection algorithm will be used.
```pycon
>>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced=True)
>>> cm.imbalance
True
>>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced=False)
>>> cm.imbalance
False
```
### Compare
In `version 2.0`, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively.
After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of seven overall benchmarks which are Landis & Koch, Cramer, Matthews, Goodman-Kruskal's Lambda A, Goodman-Kruskal's Lambda B, Krippendorff's Alpha, and Pearson's C. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average.
If the user sets the value of `by_class` boolean input `True`, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix.
```pycon
>>> cm2 = ConfusionMatrix(matrix={0: {0: 2, 1: 50, 2: 6}, 1: {0: 5, 1: 50, 2: 3}, 2: {0: 1, 1: 7, 2: 50}})
>>> cm3 = ConfusionMatrix(matrix={0: {0: 50, 1: 2, 2: 6}, 1: {0: 50, 1: 5, 2: 3}, 2: {0: 1, 1: 55, 2: 2}})
>>> cp = Compare({"cm2": cm2, "cm3": cm3})
>>> print(cp)
Best : cm2
Rank Name Class-Score Overall-Score
1 cm2 0.50278 0.58095
2 cm3 0.33611 0.52857
>>> cp.best
pycm.ConfusionMatrix(classes: [0, 1, 2])
>>> cp.sorted
['cm2', 'cm3']
>>> cp.best_name
'cm2'
```
### Multilabel confusion matrix
From `version 4.0`, `MultiLabelCM` has been added to calculate class-wise or sample-wise multilabel confusion matrices. In class-wise mode, confusion matrices are calculated for each class, and in sample-wise mode, they are generated per sample. All generated confusion matrices are binarized with a one-vs-rest transformation.
```pycon
>>> mlcm = MultiLabelCM(actual_vector=[{"cat", "bird"}, {"dog"}], predict_vector=[{"cat"}, {"dog", "bird"}], classes=["cat", "dog", "bird"])
>>> mlcm.actual_vector_multihot
[[1, 0, 1], [0, 1, 0]]
>>> mlcm.predict_vector_multihot
[[1, 0, 0], [0, 1, 1]]
>>> mlcm.get_cm_by_class("cat").print_matrix()
Predict 0 1
Actual
0 1 0
1 0 1
>>> mlcm.get_cm_by_sample(0).print_matrix()
Predict 0 1
Actual
0 1 0
1 1 1
```
### Online help
`online_help` function is added in `version 1.1` in order to open each statistics definition in web browser
```pycon
>>> from pycm import online_help
>>> online_help("J")
>>> online_help("SOA1(Landis & Koch)")
>>> online_help(2)
```
* List of items are available by calling `online_help()` (without argument)
* If PyCM website is not available, set `alt_link = True` (new in `version 2.4`)
### Screen record
<div align="center">
<a href="https://asciinema.org/a/171863" target="_blank"><img src="https://asciinema.org/a/171863.png"/></a>
</div>
## Try PyCM in your browser!
PyCM can be used online in interactive Jupyter Notebooks via the Binder or Colab services! Try it out now! :
[](https://mybinder.org/v2/gh/sepandhaghighi/pycm/master)
[](https://colab.research.google.com/github/sepandhaghighi/pycm/blob/master)
* Check `Examples` in `Document` folder
## Issues & bug reports
1. Fill an issue and describe it. We'll check it ASAP!
- Please complete the issue template
2. Discord : [https://discord.com/invite/zqpU2b3J3f](https://discord.com/invite/zqpU2b3J3f)
3. Website : [https://www.pycm.io](https://www.pycm.io)
4. Mailing List : [https://mail.python.org/mailman3/lists/pycm.python.org/](https://mail.python.org/mailman3/lists/pycm.python.org/)
5. Email : [info@pycm.io](mailto:info@pycm.io "info@pycm.io")
## Acknowledgments
[NLnet foundation](https://nlnet.nl) has supported the PyCM project from version **3.6** to **4.0** through the [NGI Assure](https://nlnet.nl/assure) Fund. This fund is set up by [NLnet foundation](https://nlnet.nl) with funding from the European Commission's [Next Generation Internet program](https://ngi.eu), administered by DG Communications Networks, Content, and Technology under grant agreement [**No 957073**](https://nlnet.nl/project/PyCM/).
<a href="https://nlnet.nl"><img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/NlNet.svg" height="50px" alt="NLnet foundation"></a> <a href="https://nlnet.nl/assure"><img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/NGIAssure.svg" height="50px" alt="NGI Assure"></a>
[Python Software Foundation (PSF)](https://www.python.org/psf/) grants PyCM library partially for version **3.7**. [PSF](https://www.python.org/psf/) is the organization behind Python. Their mission is to promote, protect, and advance the Python programming language and to support and facilitate the growth of a diverse and international community of Python programmers.
<a href="https://www.python.org/psf/"><img src="https://github.com/sepandhaghighi/pycm/raw/master/Otherfiles/PSF.png" height="55px" alt="Python Software Foundation"></a>
Some parts of the infrastructure for this project are supported by:
<p>
<a href="https://www.digitalocean.com/">
<img src="https://opensource.nyc3.cdn.digitaloceanspaces.com/attribution/assets/SVG/DO_Logo_horizontal_blue.svg" width="201px" alt="DigitalOcean">
</a>
</p>
## Cite
If you use PyCM in your research, we would appreciate citations to the following paper:
[Haghighi, S., Jasemi, M., Hessabi, S. and Zolanvari, A., 2018. PyCM: Multiclass confusion matrix library in Python. *Journal of Open Source Software*, 3(25), p.729.](https://joss.theoj.org/papers/10.21105/joss.00729)
```bibtex
@article{Haghighi2018,
doi = {10.21105/joss.00729},
url = {https://doi.org/10.21105/joss.00729},
year = {2018},
month = {may},
publisher = {The Open Journal},
volume = {3},
number = {25},
pages = {729},
author = {Sepand Haghighi and Masoomeh Jasemi and Shaahin Hessabi and Alireza Zolanvari},
title = {{PyCM}: Multiclass confusion matrix library in Python},
journal = {Journal of Open Source Software}
}
```
Download [PyCM.bib](http://www.pycm.io/PYCM.bib)
<table>
<tr>
<td align="center">JOSS</td>
<td align="center"><a href="https://doi.org/10.21105/joss.00729"><img src="http://joss.theoj.org/papers/10.21105/joss.00729/status.svg"></a></td>
</tr>
<tr>
<td align="center">Zenodo</td>
<td align="center"><a href="https://doi.org/10.5281/zenodo.1157173"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1157173.svg" alt="DOI"></a></td>
</tr>
</table>
## Show your support
### Star this repo
Give a ⭐️ if this project helped you!
### Donate to our project
If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .
<a href="http://www.pycm.io/donate.html" target="_blank"><img src="http://www.pycm.io/images/Donate-Button.png" height="90px" width="270px" alt="PyCM Donation"></a>
|