1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
# -*- coding: utf-8 -*-
"""
>>> from pycm import Curve, ROCCurve, PRCurve
>>> import numpy as np
>>> crv = Curve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1])
>>> crv
pycm.Curve(classes: [2, 1])
>>> crv.binary
True
>>> crv.classes
[2, 1]
>>> crv.thresholds
[0.1, 0.2, 0.35, 0.4, 0.6, 0.65, 0.8, 0.9]
>>> crv.data[2]["TPR"]
[1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5, 0.0]
>>> crv.data[2]["FPR"]
[1.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]
>>> abs(crv.area()[1]-0.75) < 0.001
True
>>> abs(crv.area()[2]-0.75) < 0.001
True
>>> abs(crv.area(method="midpoint")[1] - 0.75) < 0.001
True
>>> abs(crv.area(method="midpoint")[2] - 0.75) < 0.001
True
>>> crv = Curve(actual_vector=[1, 1, "2", "2"], probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[1, "2"])
>>> crv.classes
['1', '2']
>>> crv.data["1"]["TPR"]
[1.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]
>>> crv.data["2"]["TPR"]
[1.0, 1.0, 0.5, 0.5, 0.5, 0.5, 0.0, 0.0]
>>> crv = Curve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1], thresholds=[1.8 , 0.8 , 0.4 , 0.35, 0.1 ])
>>> crv.thresholds
[0.1, 0.35, 0.4, 0.8, 1.8]
>>> crv.data[2]["TPR"]
[1.0, 1.0, 0.5, 0.5, 0.0]
>>> crv.data[2]["FPR"]
[1.0, 0.5, 0.5, 0.0, 0.0]
>>> crv = Curve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1], thresholds=np.array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ]))
>>> crv.thresholds
[0.1, 0.35, 0.4, 0.8, 1.8]
>>> crv.data[2]["TPR"]
[1.0, 1.0, 0.5, 0.5, 0.0]
>>> crv.data[2]["FPR"]
[1.0, 0.5, 0.5, 0.0, 0.0]
>>> crv = Curve(actual_vector=np.array([0, 1, 1, 2, 2]), probs=np.array([[0.01, 0.09, 0.9], [0.01, 0.09, 0.9], [0.1, 0.3, 0.6], [0.2, 0.35, 0.45], [0.1, 0.7, 0.2]]), classes=[0, 2, 1])
>>> crv.classes
[0, 2, 1]
>>> crv.binary
False
>>> crv.data[2]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.0]
>>> crv.data[1]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5]
>>> crv.data[0]["TPR"]
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> crv.title
'FPR per TPR'
>>> crv = ROCCurve(actual_vector=np.array([0, 1, 1, 2, 2]), probs=np.array([[0.01, 0.09, 0.9], [0.01, 0.09, 0.9], [0.1, 0.3, 0.6], [0.2, 0.35, 0.45], [0.1, 0.7, 0.2]]), classes=[0, 2, 1])
>>> crv
pycm.ROCCurve(classes: [0, 2, 1])
>>> crv.classes
[0, 2, 1]
>>> crv.binary
False
>>> crv.data[2]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.0, 0]
>>> crv.data[1]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0]
>>> crv.data[0]["TPR"]
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
>>> crv.title
'ROC Curve'
>>> crv.plot_x_axis
'FPR'
>>> crv.plot_y_axis
'TPR'
>>> crv = PRCurve(actual_vector=np.array([0, 1, 1, 2, 2]), probs=np.array([[0.01, 0.09, 0.9], [0.01, 0.09, 0.9], [0.1, 0.3, 0.6], [0.2, 0.35, 0.45], [0.1, 0.7, 0.2]]), classes=[0, 2, 1])
>>> crv
pycm.PRCurve(classes: [0, 2, 1])
>>> crv.classes
[0, 2, 1]
>>> crv.binary
False
>>> crv.data[2]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5]
>>> crv.data[1]["TPR"]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5]
>>> crv.data[0]["TPR"]
[1.0, 0.0, 0.0, 0.0]
>>> crv.title
'PR Curve'
>>> crv.plot_x_axis
'TPR'
>>> crv.plot_y_axis
'PPV'
>>> crv = PRCurve(actual_vector=np.array([1, 1, 2, 2]), probs=np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1])
>>> crv.plot_x_axis = "PPV"
>>> crv.plot_y_axis = "TPR"
>>> crv.data[2]["TPR"]
[1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5]
>>> crv.data[2]["PPV"]
[0.5, 0.6666666666666666, 0.6666666666666666, 0.5, 1.0, 1.0, 1.0]
>>> abs(crv.area()[2] - 0.375) < 0.001
True
>>> crv.data[2]["TPR"]
[1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5]
>>> crv.data[2]["PPV"]
[0.5, 0.5, 0.6666666666666666, 0.6666666666666666, 1.0, 1.0, 1.0]
"""
|