1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# -*- coding: utf-8 -*-
"""
>>> from pycm import *
>>> import numpy as np
>>> import os
>>> import json
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
>>> cm_2 = ConfusionMatrix(y_actu, 2)
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must be provided as a list or a NumPy array.
>>> cm_3 = ConfusionMatrix(y_actu, [1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must have the same length.
>>> cm_4 = ConfusionMatrix([], [])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must not be empty.
>>> cm_5 = ConfusionMatrix([1, 1, 1, ], [1, 1, 1, 1])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must have the same length.
>>> cm_6 = ConfusionMatrix(matrix={0: {0: 2, 1: 50, 2: 6}, 1: {0: 5, 1: 50, 2: 3}, 2: {0: 1, 1: 7, 2: 50}})
>>> cm_6.position()
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: This option is only available in vector mode.
>>> cm = ConfusionMatrix([1, 2, 3, 4], [1, 2, 3, 4], classes=[1, 2, 2, 2])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: `classes` must contain unique labels with no duplicates.
>>> cm3=ConfusionMatrix(matrix={})
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: Invalid input confusion matrix format.
>>> cm_4=ConfusionMatrix(matrix={1: {1: 2, "1": 2}, "1": {1: 2, "1": 3}})
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: All input matrix classes must be of the same type.
>>> cm_5=ConfusionMatrix(matrix={1: {1: 2}})
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: The number of classes must be at least 2.
>>> cm = ConfusionMatrix([1, 2, 3, 4], [1, 2, 3, 4], classes=[1])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: The number of classes must be at least 2.
>>> cm = ConfusionMatrix([1, 1, 1, 1], [1, 2, 1, 1], classes=[])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: The number of classes must be at least 2.
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
>>> cm = ConfusionMatrix(y_actu, y_pred)
>>> cm.distance(metric = 2)
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: `metric` type must be DistanceType.
>>> cm.relabel([1, 2, 3])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: Invalid mapping format.
>>> cm.relabel({1: "L1", 2: "L2"})
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: Invalid mapping class names.
>>> cm.relabel({0: "L1", 1: "L2", 2: "L2"})
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: Invalid mapping class names.
>>> cp = Compare([cm, cm])
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: Input must be provided as a dictionary.
>>> cp = Compare({"cm1": cm})
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: At least 2 confusion matrices are required for comparison.
>>> cp = Compare({"cm1": cm, "cm2": []})
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: Input must be a dictionary containing pycm.ConfusionMatrix objects.
>>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 9, "Class2": 3, "Class3": 0}, "Class2": {"Class1": 3, "Class2": 5, "Class3": 1}, "Class3": {"Class1": 1, "Class2": 1, "Class3": 4}})
>>> cp = Compare({"cm1": cm, "cm2": cm2})
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: All ConfusionMatrix objects must have the same domain (same sample size and number of classes).
>>> cm = ConfusionMatrix(matrix={1: {1: 9, 2: 3}, 2: {1: 3, 2: 5}}, classes=[1, 2, 3])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: The specified classes are not a subset of the matrix's classes.
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1]
>>> cm3 = ConfusionMatrix(y_actu, y_pred)
>>> cp = Compare({"cm1": cm, "cm2": cm3}, by_class=True, class_weight={1: 1, 2: 1})
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: `class_weight` must be a dictionary and specified for all classes.
>>> cp = Compare({"cm1": cm, "cm2": cm3}, by_class=True, class_weight=[])
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: `class_weight` must be a dictionary and specified for all classes.
>>> cp = Compare({"cm1": cm, "cm2": cm3}, by_class=True, class_benchmark_weight=[])
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: `class_benchmark_weight` must be a dictionary and specified for all class benchmarks.
>>> cp = Compare({"cm1": cm, "cm2": cm3}, by_class=True, overall_benchmark_weight=[])
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: `overall_benchmark_weight` must be a dictionary and specified for all overall benchmarks.
>>> cm1 = ConfusionMatrix([1, 1, 1, 0], [1, 0, 1, 1], metrics_off=True)
>>> cm2 = ConfusionMatrix([1, 1, 1, 0], [1, 0, 1, 1], metrics_off=False)
>>> cp = Compare({"cm1":cm1, "cm2":cm2})
Traceback (most recent call last):
...
pycm.errors.pycmCompareError: Comparison cannot be performed when `metrics_off=True` in any matrix.
>>> cm.CI("MCC")
Traceback (most recent call last):
...
pycm.errors.pycmCIError: Confidence interval calculation for this parameter is not supported in this version of pycm.
Supported parameters are: TPR, TNR, PPV, NPV, ACC, PLR, NLR, FPR, FNR, AUC, PRE, Kappa, Overall ACC
>>> cm.CI(2)
Traceback (most recent call last):
...
pycm.errors.pycmCIError: Input must be provided as a string.
>>> cm.average("AUCC")
Traceback (most recent call last):
...
pycm.errors.pycmAverageError: Invalid parameter!
>>> cm.weighted_average("AUCC")
Traceback (most recent call last):
...
pycm.errors.pycmAverageError: Invalid parameter!
>>> cm.weighted_average("AUC", weight=2)
Traceback (most recent call last):
...
pycm.errors.pycmAverageError: `weight` must be a dictionary and specified for all classes.
>>> cm.weighted_average("AUC", weight={1: 23})
Traceback (most recent call last):
...
pycm.errors.pycmAverageError: `weight` must be a dictionary and specified for all classes.
>>> cm.combine(1)
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: Input must be an instance of pycm.ConfusionMatrix.
>>> cm = ConfusionMatrix([1, 0, 2, 0], [1, 1, 2, 1])
>>> cm.brier_score()
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: This option is only available in binary probability mode.
>>> cm.log_loss()
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: This option is only available in binary probability mode.
>>> cm = ConfusionMatrix(["ham", "spam", "ham", "ham"], [0.1, 0.4, 0.25, 1], threshold=lambda x : "ham")
>>> cm.brier_score()
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Actual vector contains strings; `pos_class` must be explicitly specified.
>>> cm.log_loss()
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Actual vector contains strings; `pos_class` must be explicitly specified.
>>> matrix = [[1, 2, 3], [4, 6, 1], [1, 2, 3]]
>>> cm = ConfusionMatrix(matrix=matrix, classes=["L1", "L1", "L3", "L2"])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: `classes` must contain unique labels with no duplicates.
>>> cm = ConfusionMatrix(matrix=matrix, classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: The length of the classes does not match the length of the array.
>>> crv = Curve([1, 2, 2, 1], {1, 2, 2, 1}, classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: Input vectors must be provided as a list or a NumPy array.
>>> crv = Curve({1, 2, 2, 1}, [1, 2, 2, 1], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: Input vectors must be provided as a list or a NumPy array.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9]], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: Input vectors must have the same length.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, 0.9]], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: The sum of the probability values must equal 1.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.1, 0.9]], classes={1, 2})
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: `classes` must be provided as a list.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.1, 0.9]], classes=[1, 2, 3])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: `classes` does not match the actual vector.
>>> crv = Curve([1, 1, 1, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.1, 0.9]], classes=[1])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: The number of classes must be at least 2.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, "salam"]], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: Probability vector elements must be numeric.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, 0.8]], classes=[1, 2], thresholds={1, 2})
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: `thresholds` must be provided as a list or a NumPy array.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, 0.8]], classes=[1, 2], thresholds=[0.1])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: The number of thresholds must be at least 2.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, 0.8]], classes=[1, 2], thresholds=[0.1, "q"])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: `thresholds` must contain only numeric values.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.9], [0.2, 0.8]], classes=[1, 1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: `classes` must contain unique labels with no duplicates.
>>> crv = Curve([1, 2, 2, 1], [[0.1, 0.9], [0.1, 0.9], [0.1, 0.8, 0.1], [0.2, 0.8]], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: All elements of the probability vector must have the same length and match the number of classes.
>>> crv = Curve([1, 2, 2, 1], [[1], [1], [1], [1]], classes=[1, 2])
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: All elements of the probability vector must have the same length and match the number of classes.
>>> crv = Curve(actual_vector = np.array([1, 1, 2, 2]), probs = np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]), classes=[2, 1])
>>> crv.area(method="trpz")
Traceback (most recent call last):
...
pycm.errors.pycmCurveError: The integral method must be either 'trapezoidal' or 'midpoint'.
>>> cm = ConfusionMatrix(y_actu, y_pred, metrics_off=True)
>>> cm.stat()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.sensitivity_index()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.IBA_alpha(0.2)
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.NB()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.CI("Kappa")
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.average("ACC")
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.weighted_average("ACC")
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.weighted_kappa()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.weighted_alpha()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> cm.aickin_alpha()
Traceback (most recent call last):
...
pycm.errors.pycmMatrixError: This method cannot be executed when `metrics_off=True`.
>>> mlcm = MultiLabelCM([[0, 1], [1, 1]], [[1, 0], [1, 0]])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Failed to extract classes from input. Input vectors should be a list of sets with unified types.
>>> mlcm = MultiLabelCM([{'dog'}, {'cat', 'dog'}], ['cat', {'cat'}])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Failed to extract classes from input. Input vectors should be a list of sets with unified types.
>>> mlcm = MultiLabelCM(['dog', {'cat', 'dog'}], [{'cat'}, {'cat'}])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Failed to extract classes from input. Input vectors should be a list of sets with unified types.
>>> mlcm = MultiLabelCM([{'dog'}, {'cat', 'dog'}], [{'cat'}, {'cat'}])
>>> mlcm.get_cm_by_class(1)
Traceback (most recent call last):
...
pycm.errors.pycmMultiLabelError: The specified class name is not among the confusion matrix's classes.
>>> mlcm.get_cm_by_sample(2)
Traceback (most recent call last):
...
pycm.errors.pycmMultiLabelError: Index is out of range for the given vector.
>>> mlcm = MultiLabelCM([{'dog'}, {'cat', 'dog'}], [{'cat'}, {'cat', 'bird'}], classes=['dog', 'cat'])
>>> mlcm.get_cm_by_class('bird')
Traceback (most recent call last):
...
pycm.errors.pycmMultiLabelError: The specified class name is not among the confusion matrix's classes.
>>> mlcm = MultiLabelCM(2, [[1, 0], [1, 0]])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must be provided as a list or a NumPy array.
>>> mlcm = MultiLabelCM([{1, 0}, {1, 0}, {1,1}], [{1, 0}, {1, 0}])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must have the same length.
>>> mlcm = MultiLabelCM([], [])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: Input vectors must not be empty.
>>> mlcm = MultiLabelCM([{1, 0}, {1, 0}], [{1, 0}, {1, 0}], classes=[1,0,1])
Traceback (most recent call last):
...
pycm.errors.pycmVectorError: `classes` must contain unique labels with no duplicates.
"""
|