File: ci.py

package info (click to toggle)
python-pycm 4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,048 kB
  • sloc: python: 5,178; sh: 8; makefile: 6
file content (254 lines) | stat: -rw-r--r-- 7,300 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
"""Class statistics functions."""
from __future__ import division
import math


def CI_calc_agresti(item1, item2, CV=1.96):
    """
    Calculate confidence interval using Agresti-Coull method.

    :param item1: parameter
    :type  item1: float
    :param item2: number of observations
    :type item2: int
    :param CV: critical value
    :type CV:float
    :return: confidence interval as tuple
    """
    try:
        item3 = item2 * item1
        mean = (item3 + (CV**2) / 2) / (item2 + CV**2)
        error = math.sqrt(mean * (1 - mean) / (item2 + CV**2))
        CI_down = mean - CV * error
        CI_up = mean + CV * error
        return (CI_down, CI_up)
    except Exception:
        return ("None", "None")


def CI_calc_wilson(item1, item2, CV=1.96):
    """
    Calculate confidence interval using Wilson method.

    :param item1: parameter
    :type  item1: float
    :param item2: number of observations
    :type item2: int
    :param CV: critical value
    :type CV:float
    :return: confidence interval as tuple
    """
    try:
        mean = (item1 + ((CV**2) / (2 * item2))) / (1 + (CV**2) / item2)
        error = math.sqrt((item1 * (1 - item1) / item2) +
                          ((CV**2) / (4 * item2**2)))
        coef = CV / (1 + (CV**2) / item2)
        CI_down = mean - coef * error
        CI_up = mean + coef * error
        return (CI_down, CI_up)
    except Exception:
        return ("None", "None")


def AUC_SE_calc(AUC, P, N):
    """
    Calculate AUC standard error.

    :param AUC: AUC value
    :type AUC: float
    :param P: number of actual positives
    :type P: int
    :param N: number of actual negatives
    :type N: int
    :return: standard error as float
    """
    try:
        q0 = AUC * (1 - AUC)
        q1 = (AUC / (2 - AUC)) - AUC**2
        q2 = ((2 * (AUC**2)) / (1 + AUC)) - AUC**2
        result = math.sqrt((q0 + (N - 1) * q1 + (P - 1) * q2) / (P * N))
        return result
    except Exception:
        return "None"


def LR_SE_calc(item1, item2, item3, item4):
    """
    Calculate likelihood ratio +/- standard error.

    :param item1: true positive or false negative (TP or FN)
    :type item1: int
    :param item2: number of actual positives (P)
    :type item2: int
    :param item3: false positive or true negative (FP or TN)
    :type item3: int
    :param item4: number of actual negatives (N)
    :type item4: int
    :return: standard error as float
    """
    try:
        return math.sqrt((1 / item1) - (1 / item2) + (1 / item3) - (1 / item4))
    except Exception:
        return "None"


def LR_CI_calc(mean, SE, CV=1.96):
    """
    Calculate confidence interval for likelihood ratio +/- using log method.

    :param mean: mean of data
    :type mean: float
    :param SE: standard error of data
    :type SE: float
    :param CV: critical value
    :type CV:float
    :return: confidence interval as tuple
    """
    try:
        CI_down = math.exp(math.log(mean) - CV * SE)
        CI_up = math.exp(math.log(mean) + CV * SE)
        return (CI_down, CI_up)
    except Exception:
        return ("None", "None")


def CI_calc(mean, SE, CV=1.96):
    """
    Calculate confidence interval.

    :param mean: mean of data
    :type mean: float
    :param SE: standard error of data
    :type SE: float
    :param CV: critical value
    :type CV:float
    :return: confidence interval as tuple
    """
    try:
        CI_down = mean - CV * SE
        CI_up = mean + CV * SE
        return (CI_down, CI_up)
    except Exception:
        return ("None", "None")


def SE_calc(item1, item2):
    """
    Calculate standard error with binomial distribution.

    :param item1: parameter
    :type  item1: float
    :param item2: number of observations
    :type item2: int
    :return: standard error as float
    """
    try:
        return math.sqrt(
            (item1 * (1 - item1)) / item2)
    except Exception:
        return "None"


def kappa_SE_calc(PA, PE, POP):
    """
    Calculate kappa standard error.

    :param PA: observed agreement among raters (overall accuracy)
    :type PA: float
    :param PE: hypothetical probability of chance agreement (random accuracy)
    :type PE: float
    :param POP: population or total number of samples
    :type POP:int
    :return: kappa standard error as float
    """
    try:
        result = math.sqrt((PA * (1 - PA)) / (POP * ((1 - PE)**2)))
        return result
    except Exception:
        return "None"


def __CI_class_handler__(cm, param, CV, binom_method="normal-approx"):
    """
    Handle CI calculation for class parameters.

    :param cm: confusion matrix
    :type cm: pycm.ConfusionMatrix object
    :param param: input parameter
    :type param: str
    :param CV: critical value
    :type CV: float
    :param binom_method: binomial confidence interval method
    :type binom_method: str
    :return: result as dictionary
    """
    result = {}
    item1 = cm.class_stat[param]
    if param == "TPR" or param == "FNR":
        item2 = cm.class_stat["P"]
    elif param == "TNR" or param == "FPR":
        item2 = cm.class_stat["N"]
    elif param == "PPV":
        item2 = cm.class_stat["TOP"]
    elif param == "NPV":
        item2 = cm.class_stat["TON"]
    elif param == "ACC" or param == "PRE":
        item2 = cm.class_stat["POP"]
    for i in cm.classes:
        temp = []
        if param == "PLR":
            SE = LR_SE_calc(cm.TP[i], cm.P[i], cm.FP[i], cm.N[i])
            CI = LR_CI_calc(cm.PLR[i], SE, CV)
        elif param == "NLR":
            SE = LR_SE_calc(cm.FN[i], cm.P[i], cm.TN[i], cm.N[i])
            CI = LR_CI_calc(cm.NLR[i], SE, CV)
        elif param == "AUC":
            SE = AUC_SE_calc(cm.AUC[i], cm.P[i], cm.N[i])
            CI = CI_calc(item1[i], SE, CV)
        else:
            SE = SE_calc(item1[i], item2[i])
            if binom_method == "wilson":
                CI = CI_calc_wilson(item1[i], item2[i], CV)
            elif binom_method == "agresti-coull":
                CI = CI_calc_agresti(item1[i], item2[i], CV)
            else:
                CI = CI_calc(item1[i], SE, CV)
        temp.append(SE)
        temp.append(CI)
        result[i] = temp
    return result


def __CI_overall_handler__(cm, param, CV, binom_method="normal-approx"):
    """
    Handle CI calculation for overall parameters.

    :param cm: confusion matrix
    :type cm: pycm.ConfusionMatrix object
    :param param: input parameter
    :type param: str
    :param CV: critical value
    :type CV: float
    :param binom_method: binomial confidence interval method
    :type binom_method: str
    :return: result as list [SE, (CI_DOWN, DI_UP)]
    """
    result = []
    population = list(cm.POP.values())[0]
    if param == "Kappa":
        SE = kappa_SE_calc(
            cm.overall_stat["Overall ACC"],
            cm.overall_stat["Overall RACC"],
            population)
    else:
        SE = SE_calc(cm.overall_stat[param], population)
    if binom_method == "wilson":
        CI = CI_calc_wilson(cm.overall_stat[param], population, CV)
    elif binom_method == "agresti-coull":
        CI = CI_calc_agresti(cm.overall_stat[param], population, CV)
    else:
        CI = CI_calc(cm.overall_stat[param], SE, CV)
    result.append(SE)
    result.append(CI)
    return result