1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
# -*- coding: utf-8 -*-
"""Class statistics functions."""
from __future__ import division
import math
def CI_calc_agresti(item1, item2, CV=1.96):
"""
Calculate confidence interval using Agresti-Coull method.
:param item1: parameter
:type item1: float
:param item2: number of observations
:type item2: int
:param CV: critical value
:type CV:float
:return: confidence interval as tuple
"""
try:
item3 = item2 * item1
mean = (item3 + (CV**2) / 2) / (item2 + CV**2)
error = math.sqrt(mean * (1 - mean) / (item2 + CV**2))
CI_down = mean - CV * error
CI_up = mean + CV * error
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def CI_calc_wilson(item1, item2, CV=1.96):
"""
Calculate confidence interval using Wilson method.
:param item1: parameter
:type item1: float
:param item2: number of observations
:type item2: int
:param CV: critical value
:type CV:float
:return: confidence interval as tuple
"""
try:
mean = (item1 + ((CV**2) / (2 * item2))) / (1 + (CV**2) / item2)
error = math.sqrt((item1 * (1 - item1) / item2) +
((CV**2) / (4 * item2**2)))
coef = CV / (1 + (CV**2) / item2)
CI_down = mean - coef * error
CI_up = mean + coef * error
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def AUC_SE_calc(AUC, P, N):
"""
Calculate AUC standard error.
:param AUC: AUC value
:type AUC: float
:param P: number of actual positives
:type P: int
:param N: number of actual negatives
:type N: int
:return: standard error as float
"""
try:
q0 = AUC * (1 - AUC)
q1 = (AUC / (2 - AUC)) - AUC**2
q2 = ((2 * (AUC**2)) / (1 + AUC)) - AUC**2
result = math.sqrt((q0 + (N - 1) * q1 + (P - 1) * q2) / (P * N))
return result
except Exception:
return "None"
def LR_SE_calc(item1, item2, item3, item4):
"""
Calculate likelihood ratio +/- standard error.
:param item1: true positive or false negative (TP or FN)
:type item1: int
:param item2: number of actual positives (P)
:type item2: int
:param item3: false positive or true negative (FP or TN)
:type item3: int
:param item4: number of actual negatives (N)
:type item4: int
:return: standard error as float
"""
try:
return math.sqrt((1 / item1) - (1 / item2) + (1 / item3) - (1 / item4))
except Exception:
return "None"
def LR_CI_calc(mean, SE, CV=1.96):
"""
Calculate confidence interval for likelihood ratio +/- using log method.
:param mean: mean of data
:type mean: float
:param SE: standard error of data
:type SE: float
:param CV: critical value
:type CV:float
:return: confidence interval as tuple
"""
try:
CI_down = math.exp(math.log(mean) - CV * SE)
CI_up = math.exp(math.log(mean) + CV * SE)
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def CI_calc(mean, SE, CV=1.96):
"""
Calculate confidence interval.
:param mean: mean of data
:type mean: float
:param SE: standard error of data
:type SE: float
:param CV: critical value
:type CV:float
:return: confidence interval as tuple
"""
try:
CI_down = mean - CV * SE
CI_up = mean + CV * SE
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def SE_calc(item1, item2):
"""
Calculate standard error with binomial distribution.
:param item1: parameter
:type item1: float
:param item2: number of observations
:type item2: int
:return: standard error as float
"""
try:
return math.sqrt(
(item1 * (1 - item1)) / item2)
except Exception:
return "None"
def kappa_SE_calc(PA, PE, POP):
"""
Calculate kappa standard error.
:param PA: observed agreement among raters (overall accuracy)
:type PA: float
:param PE: hypothetical probability of chance agreement (random accuracy)
:type PE: float
:param POP: population or total number of samples
:type POP:int
:return: kappa standard error as float
"""
try:
result = math.sqrt((PA * (1 - PA)) / (POP * ((1 - PE)**2)))
return result
except Exception:
return "None"
def __CI_class_handler__(cm, param, CV, binom_method="normal-approx"):
"""
Handle CI calculation for class parameters.
:param cm: confusion matrix
:type cm: pycm.ConfusionMatrix object
:param param: input parameter
:type param: str
:param CV: critical value
:type CV: float
:param binom_method: binomial confidence interval method
:type binom_method: str
:return: result as dictionary
"""
result = {}
item1 = cm.class_stat[param]
if param == "TPR" or param == "FNR":
item2 = cm.class_stat["P"]
elif param == "TNR" or param == "FPR":
item2 = cm.class_stat["N"]
elif param == "PPV":
item2 = cm.class_stat["TOP"]
elif param == "NPV":
item2 = cm.class_stat["TON"]
elif param == "ACC" or param == "PRE":
item2 = cm.class_stat["POP"]
for i in cm.classes:
temp = []
if param == "PLR":
SE = LR_SE_calc(cm.TP[i], cm.P[i], cm.FP[i], cm.N[i])
CI = LR_CI_calc(cm.PLR[i], SE, CV)
elif param == "NLR":
SE = LR_SE_calc(cm.FN[i], cm.P[i], cm.TN[i], cm.N[i])
CI = LR_CI_calc(cm.NLR[i], SE, CV)
elif param == "AUC":
SE = AUC_SE_calc(cm.AUC[i], cm.P[i], cm.N[i])
CI = CI_calc(item1[i], SE, CV)
else:
SE = SE_calc(item1[i], item2[i])
if binom_method == "wilson":
CI = CI_calc_wilson(item1[i], item2[i], CV)
elif binom_method == "agresti-coull":
CI = CI_calc_agresti(item1[i], item2[i], CV)
else:
CI = CI_calc(item1[i], SE, CV)
temp.append(SE)
temp.append(CI)
result[i] = temp
return result
def __CI_overall_handler__(cm, param, CV, binom_method="normal-approx"):
"""
Handle CI calculation for overall parameters.
:param cm: confusion matrix
:type cm: pycm.ConfusionMatrix object
:param param: input parameter
:type param: str
:param CV: critical value
:type CV: float
:param binom_method: binomial confidence interval method
:type binom_method: str
:return: result as list [SE, (CI_DOWN, DI_UP)]
"""
result = []
population = list(cm.POP.values())[0]
if param == "Kappa":
SE = kappa_SE_calc(
cm.overall_stat["Overall ACC"],
cm.overall_stat["Overall RACC"],
population)
else:
SE = SE_calc(cm.overall_stat[param], population)
if binom_method == "wilson":
CI = CI_calc_wilson(cm.overall_stat[param], population, CV)
elif binom_method == "agresti-coull":
CI = CI_calc_agresti(cm.overall_stat[param], population, CV)
else:
CI = CI_calc(cm.overall_stat[param], SE, CV)
result.append(SE)
result.append(CI)
return result
|