File: class_funcs.py

package info (click to toggle)
python-pycm 4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,048 kB
  • sloc: python: 5,178; sh: 8; makefile: 6
file content (819 lines) | stat: -rw-r--r-- 21,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# -*- coding: utf-8 -*-
"""Class statistics functions."""
from __future__ import division
import math
from .utils import normal_quantile
from .interpret import *
from .params import CLASS_PARAMS


def sensitivity_index_calc(TPR, FPR):
    """
    Calculate Sensitivity index (d prime).

    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :param FPR: fall-out or false positive rate
    :type FPR: float
    :return: sensitivity index as float
    """
    try:
        return normal_quantile(TPR) - normal_quantile(FPR)
    except TypeError:
        return "None"


def NB_calc(TP, FP, POP, w):
    """
    Calculate Net Benefit (NB).

    :param TP: true positive
    :type TP: int
    :param FP: false positive
    :type FP: int
    :param POP: population or total number of samples
    :type POP: int
    :param w: weight
    :type w: float
    :return: NB as float
    """
    try:
        NB = (TP - w * FP) / POP
        return NB
    except (ZeroDivisionError, TypeError):
        return "None"


def TI_calc(TP, FP, FN, alpha, beta):
    """
    Calculate Tversky index (TI).

    :param TP: true positive
    :type TP: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :param alpha: alpha coefficient
    :type alpha: float
    :param beta: beta coefficient
    :type beta: float
    :return: TI as float
    """
    try:
        TI = TP / (TP + alpha * FN + beta * FP)
        return TI
    except (ZeroDivisionError, TypeError):
        return "None"


def OOC_calc(TP, TOP, P):
    """
    Calculate Otsuka-Ochiai coefficient (OOC).

    :param TP: true positive
    :type TP: int
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :return: OOC as float
    """
    try:
        OOC = TP / (math.sqrt(TOP * P))
        return OOC
    except (ZeroDivisionError, TypeError, ValueError):
        return "None"


def OC_calc(TP, TOP, P):
    """
    Calculate Overlap coefficient (OC).

    :param TP: true positive
    :type TP: int
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :return: overlap coefficient as float
    """
    try:
        overlap_coef = TP / min(TOP, P)
        return overlap_coef
    except (ZeroDivisionError, TypeError):
        return "None"


def BB_calc(TP, TOP, P):
    """
    Calculate Braun-Blanquet similarity (BB).

    :param TP: true positive
    :type TP: int
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :return: BB as float
    """
    try:
        BB = TP / max(TOP, P)
        return BB
    except (ZeroDivisionError, TypeError):
        return "None"


def AGF_calc(TP, FP, FN, TN):
    """
    Calculate Adjusted F-score (AGF).

    :param TP: true positive
    :type TP: int
    :param TN: true negative
    :type TN: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :return: AGF as float
    """
    try:
        F2 = F_calc(TP=TP, FP=FP, FN=FN, beta=2)
        F05_inv = F_calc(TP=TN, FP=FN, FN=FP, beta=0.5)
        AGF = math.sqrt(F2 * F05_inv)
        return AGF
    except (TypeError, ValueError):
        return "None"


def AGM_calc(TPR, TNR, GM, N, POP):
    """
    Calculate Adjusted geometric mean (AGM).

    :param TNR: specificity or true negative rate
    :type TNR: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :param GM: geometric mean
    :type GM: float
    :param N: number of actual negatives
    :type N: int
    :param POP: population or total number of samples
    :type POP: int
    :return: AGM as float
    """
    try:
        n = N / POP
        if TPR == 0:
            result = 0
        else:
            result = (GM + TNR * n) / (1 + n)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def Q_calc(TP, TN, FP, FN):
    """
    Calculate Yule's Q.

    :param TP: true positive
    :type TP: int
    :param TN: true negative
    :type TN: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :return: Yule's Q as float
    """
    try:
        OR = (TP * TN) / (FP * FN)
        result = (OR - 1) / (OR + 1)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def TTPN_calc(item1, item2):
    """
    Calculate TPR, TNR, PPV, and NPV.

    :param item1: item1 in fractional expression
    :type item1: int
    :param item2: item2 in fractional expression
    :type item2: int
    :return: result as float
    """
    try:
        result = item1 / (item1 + item2)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def FXR_calc(item):
    """
    Calculate False negative rate, False positive rate, False discovery rate (FDR), and False omission rate (FOR).

    :param item: item In expression
    :type item:float
    :return: result as float
    """
    try:
        result = 1 - item
        return result
    except TypeError:
        return "None"


def ACC_calc(TP, TN, FP, FN):
    """
    Calculate Accuracy.

    :param TP: true positive
    :type TP: int
    :param TN: true negative
    :type TN: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :return: accuracy as float
    """
    try:
        result = (TP + TN) / (TP + TN + FN + FP)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def F_calc(TP, FP, FN, beta):
    """
    Calculate F-score.

    :param TP: true positive
    :type TP: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :param beta: beta coefficient
    :type beta: float
    :return: F-score as float
    """
    try:
        result = ((1 + (beta)**2) * TP) / \
            ((1 + (beta)**2) * TP + FP + (beta**2) * FN)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def MCC_calc(TP, TN, FP, FN):
    """
    Calculate Matthews correlation coefficient (MCC).

    :param TP: true positive
    :type TP: int
    :param TN: true negative
    :type TN: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :return: MCC as float
    """
    try:
        result = (TP * TN - FP * FN) / \
            (math.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)))
        return result
    except (ZeroDivisionError, TypeError, ValueError):
        return "None"


def MK_BM_calc(item1, item2):
    """
    Calculate Informedness (BM), Markedness (MK), and Individual classification success index (ICSI).

    :param item1: item1 in expression
    :type item1:float
    :param item2: item2 in expression
    :type item2:float
    :return: MK and BM as float
    """
    try:
        result = item1 + item2 - 1
        return result
    except TypeError:
        return "None"


def LR_calc(item1, item2):
    """
    Calculate Likelihood ratio (LR).

    :param item1: item1 in expression
    :type item1:float
    :param item2: item2 in expression
    :type item2:float
    :return: LR+ and LR- as float
    """
    try:
        result = item1 / item2
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def proportion_calc(item1, item2):
    """
    Calculate Prevalence.

    :param item1: item1 in fractional expression
    :type item1: int
    :param item2: item2 in fractional expression
    :type item2: int
    :return: proportion as float
    """
    try:
        result = item1 / item2
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def G_calc(item1, item2):
    """
    Calculate G-measure & G-mean.

    :param item1: True positive rate (TPR) or True negative rate (TNR) or Positive predictive value (PPV)
    :type item1: float
    :param item2: True positive rate (TPR) or True negative rate (TNR) or Positive predictive value (PPV)
    :type item2: float
    :return: G-measure or G-mean as float
    """
    try:
        result = math.sqrt(item1 * item2)
        return result
    except (TypeError, ValueError):
        return "None"


def RACC_calc(TOP, P, POP):
    """
    Calculate Random accuracy (RACC).

    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :param POP: population or total number of samples
    :type POP:int
    :return: RACC as float
    """
    try:
        result = (TOP * P) / ((POP) ** 2)
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def RACCU_calc(TOP, P, POP):
    """
    Calculate Random accuracy unbiased (RACCU).

    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :param POP: population or total number of samples
    :type POP: int
    :return: RACCU as float
    """
    try:
        result = ((TOP + P) / (2 * POP))**2
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def ERR_calc(ACC):
    """
    Calculate Error rate.

    :param ACC: accuracy
    :type ACC: float
    :return: error rate as float
    """
    try:
        return 1 - ACC
    except TypeError:
        return "None"


def jaccard_index_calc(TP, TOP, P):
    """
    Calculate Jaccard index for each class.

    :param TP: true positive
    :type TP: int
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :return: Jaccard index as float
    """
    try:
        return TP / (TOP + P - TP)
    except (ZeroDivisionError, TypeError):
        return "None"


def IS_calc(TP, FP, FN, POP):
    """
    Calculate Information score (IS).

    :param TP: true positive
    :type TP: int
    :param FP: false positive
    :type FP: int
    :param FN: false negative
    :type FN: int
    :param POP: population or total number of samples
    :type POP: int
    :return: IS as float
    """
    try:
        result = -math.log(((TP + FN) / POP), 2) + \
            math.log((TP / (TP + FP)), 2)
        return result
    except (ZeroDivisionError, TypeError, ValueError):
        return "None"


def CEN_misclassification_calc(
        table,
        TOP,
        P,
        i,
        j,
        subject_class,
        modified=False):
    """
    Calculate Misclassification probability.

    :param table: input confusion matrix
    :type table: dict
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :param i: table row index (class name)
    :type i: any valid type
    :param j: table col index (class name)
    :type j: any valid type
    :param subject_class: subject to class (class name)
    :type subject_class: any valid type
    :param modified: modified mode flag
    :type modified: bool
    :return: misclassification probability as float
    """
    try:
        result = TOP + P
        if modified:
            result -= table[subject_class][subject_class]
        result = table[i][j] / result
        return result
    except (ZeroDivisionError, TypeError):
        return "None"


def CEN_calc(classes, table, TOP, P, class_name, modified=False):
    """
    Calculate Confusion Entropy (CEN) (or Modified Confusion Entropy (MCEN)).

    :param classes: confusion matrix classes
    :type classes: list
    :param table: input confusion matrix
    :type table: dict
    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :param class_name: reviewed class name
    :type class_name: any valid type
    :param modified: modified mode flag
    :type modified: bool
    :return: CEN (or MCEN) as float
    """
    try:
        result = 0
        class_number = len(classes)
        for k in classes:
            if k != class_name:
                P_j_k = CEN_misclassification_calc(
                    table, TOP, P, class_name, k, class_name, modified)
                P_k_j = CEN_misclassification_calc(
                    table, TOP, P, k, class_name, class_name, modified)
                if P_j_k != 0:
                    result += P_j_k * math.log(P_j_k, 2 * (class_number - 1))
                if P_k_j != 0:
                    result += P_k_j * math.log(P_k_j, 2 * (class_number - 1))
        if result != 0:
            result = result * (-1)
        return result
    except (ZeroDivisionError, TypeError, ValueError):
        return "None"


def AUC_calc(item, TPR):
    """
    Calculate Area under the ROC/PR curve for each class (AUC/AUPR).

    :param item: True negative rate (TNR) or Positive predictive value (PPV)
    :type item: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :return: AUC/AUPR as float
    """
    try:
        return (item + TPR) / 2
    except TypeError:
        return "None"


def dInd_calc(TNR, TPR):
    """
    Calculate Distance index (dInd).

    :param TNR: specificity or true negative rate
    :type TNR: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :return: dInd as float
    """
    try:
        result = math.sqrt(((1 - TNR)**2) + ((1 - TPR)**2))
        return result
    except (TypeError, ValueError):
        return "None"


def sInd_calc(dInd):
    """
    Calculate Similarity index (sInd).

    :param dInd: dInd
    :type dInd: float
    :return: sInd as float
    """
    try:
        return 1 - (dInd / (math.sqrt(2)))
    except (ZeroDivisionError, TypeError):
        return "None"


def DP_calc(TPR, TNR):
    """
    Calculate Discriminant power (DP).

    :param TNR: specificity or true negative rate
    :type TNR: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :return: DP as float
    """
    try:
        X = TPR / (1 - TPR)
        Y = TNR / (1 - TNR)
        return (math.sqrt(3) / math.pi) * (math.log(X, 10) + math.log(Y, 10))
    except (ZeroDivisionError, TypeError, ValueError):
        return "None"


def GI_calc(AUC):
    """
    Calculate Gini index.

    :param AUC: Area under the ROC
    :type AUC: float
    :return: Gini index as float
    """
    try:
        return 2 * AUC - 1
    except TypeError:
        return "None"


def lift_calc(PPV, PRE):
    """
    Calculate Lift score.

    :param PPV: Positive predictive value (PPV)
    :type PPV: float
    :param PRE: Prevalence
    :type PRE: float
    :return: lift score as float
    """
    try:
        return PPV / PRE
    except (ZeroDivisionError, TypeError):
        return "None"


def AM_calc(TOP, P):
    """
    Calculate Automatic/Manual (AM).

    :param TOP: number of positives in predict vector
    :type TOP: int
    :param P: number of actual positives
    :type P: int
    :return: AM as int
    """
    try:
        return TOP - P
    except TypeError:
        return "None"


def OP_calc(ACC, TPR, TNR):
    """
    Calculate Optimized precision (OP).

    :param ACC: accuracy
    :type ACC: float
    :param TNR: specificity or true negative rate
    :type TNR: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :return: OP as float
    """
    try:
        RI = abs(TNR - TPR) / (TPR + TNR)
        return ACC - RI
    except (ZeroDivisionError, TypeError):
        return "None"


def IBA_calc(TPR, TNR, alpha=1):
    """
    Calculate Index of balanced accuracy (IBA).

    :param TNR: specificity or true negative rate
    :type TNR: float
    :param TPR: sensitivity, recall, hit rate, or true positive rate
    :type TPR: float
    :param alpha: alpha coefficient
    :type alpha: float
    :return: IBA as float
    """
    try:
        IBA = (1 + alpha * (TPR - TNR)) * TPR * TNR
        return IBA
    except TypeError:
        return "None"


def BCD_calc(AM, POP):
    """
    Calculate Bray-Curtis dissimilarity (BCD).

    :param AM: Automatic/Manual
    :type AM: int
    :param POP: population or total number of samples
    :type POP: int
    :return: BCD as float
    """
    try:
        return abs(AM) / (2 * POP)
    except (ZeroDivisionError, TypeError, AttributeError):
        return "None"


def basic_statistics(TP, TN, FP, FN):
    """
    Init classes' statistics.

    :param TP: true positive
    :type TP: dict
    :param TN: true negative
    :type TN: dict
    :param FP: false positive
    :type FP: dict
    :param FN: false negative
    :type FN: dict
    :return: basic statistics as dict
    """
    result = {}
    for i in CLASS_PARAMS:
        result[i] = {}
    result["TP"] = TP
    result["TN"] = TN
    result["FP"] = FP
    result["FN"] = FN
    return result


def class_statistics(TP, TN, FP, FN, classes, table):
    """
    Return All statistics of classes.

    :param TP: true positive
    :type TP: dict
    :param TN: true negative
    :type TN: dict
    :param FP: false positive
    :type FP: dict
    :param FN: false negative
    :type FN: dict
    :param classes: confusion matrix classes
    :type classes: list
    :param table: input confusion matrix
    :type table: dict
    :return: classes' statistics as dict
    """
    result = basic_statistics(TP, TN, FP, FN)
    for i in TP:
        result["POP"][i] = TP[i] + TN[i] + FP[i] + FN[i]
        result["P"][i] = TP[i] + FN[i]
        result["N"][i] = TN[i] + FP[i]
        result["TOP"][i] = TP[i] + FP[i]
        result["TON"][i] = TN[i] + FN[i]
        result["HD"][i] = FP[i] + FN[i]
        result["TPR"][i] = TTPN_calc(TP[i], FN[i])
        result["TNR"][i] = TTPN_calc(TN[i], FP[i])
        result["PPV"][i] = TTPN_calc(TP[i], FP[i])
        result["NPV"][i] = TTPN_calc(TN[i], FN[i])
        result["FNR"][i] = FXR_calc(result["TPR"][i])
        result["FPR"][i] = FXR_calc(result["TNR"][i])
        result["FDR"][i] = FXR_calc(result["PPV"][i])
        result["FOR"][i] = FXR_calc(result["NPV"][i])
        result["ACC"][i] = ACC_calc(TP[i], TN[i], FP[i], FN[i])
        result["F1"][i] = F_calc(TP[i], FP[i], FN[i], 1)
        result["F0.5"][i] = F_calc(TP[i], FP[i], FN[i], 0.5)
        result["F2"][i] = F_calc(TP[i], FP[i], FN[i], 2)
        result["MCC"][i] = MCC_calc(TP[i], TN[i], FP[i], FN[i])
        result["BM"][i] = MK_BM_calc(result["TPR"][i], result["TNR"][i])
        result["MK"][i] = MK_BM_calc(result["PPV"][i], result["NPV"][i])
        result["PLR"][i] = LR_calc(result["TPR"][i], result["FPR"][i])
        result["NLR"][i] = LR_calc(result["FNR"][i], result["TNR"][i])
        result["DOR"][i] = LR_calc(result["PLR"][i], result["NLR"][i])
        result["PRE"][i] = proportion_calc(result["P"][i], result["POP"][i])
        result["PR"][i] = result["PRE"][i]
        result["TOPR"][i] = proportion_calc(result["TOP"][i], result["POP"][i])
        result["G"][i] = G_calc(result["PPV"][i], result["TPR"][i])
        result["RACC"][i] = RACC_calc(
            result["TOP"][i], result["P"][i], result["POP"][i])
        result["ERR"][i] = ERR_calc(result["ACC"][i])
        result["RACCU"][i] = RACCU_calc(
            result["TOP"][i], result["P"][i], result["POP"][i])
        result["J"][i] = jaccard_index_calc(
            TP[i], result["TOP"][i], result["P"][i])
        result["IS"][i] = IS_calc(TP[i], FP[i], FN[i], result["POP"][i])
        result["CEN"][i] = CEN_calc(
            classes, table, result["TOP"][i], result["P"][i], i)
        result["MCEN"][i] = CEN_calc(
            classes,
            table,
            result["TOP"][i],
            result["P"][i],
            i,
            True)
        result["AUC"][i] = AUC_calc(result["TNR"][i], result["TPR"][i])
        result["dInd"][i] = dInd_calc(result["TNR"][i], result["TPR"][i])
        result["sInd"][i] = sInd_calc(result["dInd"][i])
        result["DP"][i] = DP_calc(result["TPR"][i], result["TNR"][i])
        result["Y"][i] = result["BM"][i]
        result["PLRI"][i] = PLR_analysis(result["PLR"][i])
        result["NLRI"][i] = NLR_analysis(result["NLR"][i])
        result["DPI"][i] = DP_analysis(result["DP"][i])
        result["AUCI"][i] = AUC_analysis(result["AUC"][i])
        result["GI"][i] = GI_calc(result["AUC"][i])
        result["LS"][i] = lift_calc(result["PPV"][i], result["PRE"][i])
        result["AM"][i] = AM_calc(result["TOP"][i], result["P"][i])
        result["OP"][i] = OP_calc(
            result["ACC"][i],
            result["TPR"][i],
            result["TNR"][i])
        result["IBA"][i] = IBA_calc(result["TPR"][i], result["TNR"][i])
        result["GM"][i] = G_calc(result["TNR"][i], result["TPR"][i])
        result["Q"][i] = Q_calc(TP[i], TN[i], FP[i], FN[i])
        result["QI"][i] = Q_analysis(result["Q"][i])
        result["AGM"][i] = AGM_calc(
            result["TPR"][i],
            result["TNR"][i],
            result["GM"][i],
            result["N"][i],
            result["POP"][i])
        result["MCCI"][i] = MCC_analysis(result["MCC"][i])
        result["AGF"][i] = AGF_calc(TP[i], FP[i], FN[i], TN[i])
        result["OC"][i] = OC_calc(TP[i], result["TOP"][i], result["P"][i])
        result["BB"][i] = BB_calc(TP[i], result["TOP"][i], result["P"][i])
        result["OOC"][i] = OOC_calc(TP[i], result["TOP"][i], result["P"][i])
        result["AUPR"][i] = AUC_calc(result["PPV"][i], result["TPR"][i])
        result["ICSI"][i] = MK_BM_calc(result["PPV"][i], result["TPR"][i])
        result["BCD"][i] = BCD_calc(result["AM"][i], result["POP"][i])
    return result