1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# -*- coding: utf-8 -*-
"""This file contains a function to generate a random confusion matrix."""
import numpy as np
from enum import Enum
from itertools import product
from .cm import ConfusionMatrix
from .params import BENCHMARK_REPORT_TEMPLATE
from .params import BENCHMARK_CLASS_SIZES, BENCHMARK_POPULATION_SIZES
class ClassDistributionScenario(Enum):
"""
Enum to represent different scenarios for generating class percentages.
- UNIFORM: All classes have equal representation.
- MAJORITY_CLASS: Only one class has a majority representation, others share the rest equally.
- MINORITY_CLASS: Only one class has a minority representation, others share the rest equally.
"""
UNIFORM = "uniform"
MAJORITY_CLASS = "majority_class"
MINORITY_CLASS = "minority_class"
def _generate_class_percentages(num_classes, scenario):
"""
Generate class percentages based on the given scenario.
:params num_classes: number of classes.
:type num_classes: int
:params scenario: the scenario to generate percentages for.
:type scenario: scenario
:return: list of percentages for each class.
"""
if num_classes < 2:
raise ValueError("Number of classes must be at least 2.")
if scenario == ClassDistributionScenario.UNIFORM:
# Equal percentage for all classes
raw_ratio_list = [1] * num_classes
elif scenario == ClassDistributionScenario.MAJORITY_CLASS:
raw_ratio_list = [5] + [1] * (num_classes - 1)
elif scenario == ClassDistributionScenario.MINORITY_CLASS:
raw_ratio_list = [0.2] + [1] * (num_classes - 1)
else:
raise ValueError("Invalid scenario")
return list(100 * np.array(raw_ratio_list) / np.sum(raw_ratio_list))
def _calculate_class_counts(class_percentages, total_population):
"""
Calculate the number of samples for each class based on percentages and total population.
:param class_percentages: dict of percentages for each class (sum should be 100)
:type class_percentages: dict
:param total_population: total number of samples
:type total_population: int
:return: dictionary of sample counts for each class
"""
classes = list(class_percentages.keys())
percentages = np.array(list(class_percentages.values()), dtype=float)
if len(classes) < 2:
raise ValueError("Number of classes must be at least 2.")
normalized_percentages = percentages / percentages.sum()
class_counts = (normalized_percentages * total_population).astype(int)
remainder = total_population - class_counts.sum()
if remainder > 0:
class_counts[np.argmax(normalized_percentages)] += remainder
return dict(zip(classes, class_counts.astype(int).tolist()))
def generate_confusion_matrix(class_percentages, total_population, seed=None):
"""
Generate a random confusion matrix with given class percentages and total population.
:param class_percentages: dict or list of percentages for each class (sum should be 100)
:type class_percentages: dict or list
:param total_population: total number of samples in the confusion matrix
:type total_population: int
:param seed: random seed for reproducibility
:type seed: int or None
:return: confusion matrix as a dictionary
"""
np.random.seed(seed)
if total_population <= 0:
raise ValueError("Total population must be positive.")
if isinstance(class_percentages, list):
class_percentages = dict(enumerate(class_percentages))
class_labels = list(class_percentages.keys())
num_classes = len(class_percentages)
if num_classes < 2:
raise ValueError("Number of classes must be at least 2.")
class_counts = _calculate_class_counts(class_percentages, total_population)
confusion_matrix = {
actual: {pred: 0 for pred in class_labels} for actual in class_labels
}
for actual in class_labels:
count = class_counts[actual]
if count == 0:
continue
dirichlet_params = np.ones(num_classes)
actual_idx = class_labels.index(actual)
dirichlet_params[actual_idx] *= 10 # Bias toward correct class
probs = np.random.dirichlet(dirichlet_params)
predicted_counts = (probs * count).astype(int)
remainder = count - predicted_counts.sum()
if remainder > 0:
predicted_counts[np.argmax(probs)] += remainder
for pred_idx, pred_class in enumerate(class_labels):
confusion_matrix[actual][pred_class] = int(predicted_counts[pred_idx])
return confusion_matrix
def generate_confusion_matrix_with_scenario(
num_classes,
total_population,
scenario=ClassDistributionScenario.UNIFORM,
seed=None):
"""
Generate a random confusion matrix based on the given scenario.
:param num_classes: number of classes.
:type num_classes: int
:param total_population: total number of samples.
:type total_population: int
:param scenario: the scenario to generate the confusion matrix for.
:type scenario: ClassDistributionScenario
:param seed: random seed for reproducibility.
:type seed: int or None
:return: confusion matrix as a dictionary.
"""
if isinstance(scenario, str):
try:
scenario = ClassDistributionScenario[scenario.upper()]
except KeyError:
raise ValueError("Invalid scenario. Must be one of {0}.".format(
[sen.value for sen in ClassDistributionScenario]))
class_percentages = _generate_class_percentages(num_classes, scenario)
return generate_confusion_matrix(class_percentages=class_percentages,
total_population=total_population,
seed=seed)
def run_report_benchmark(seed=None, digits=10):
"""
Benchmark the generation of some confusion matrices and print the report.
:param seed: random seed for reproducibility.
:type seed: int or None
:param digits: number of digits to round the timings to.
:type digits: int
:return: None
"""
Ns = BENCHMARK_POPULATION_SIZES
Ms = BENCHMARK_CLASS_SIZES
SCENARIOS = [s.value for s in ClassDistributionScenario]
for N, M, scenario in product(Ns, Ms, SCENARIOS):
confusion_matrix = generate_confusion_matrix_with_scenario(
num_classes=M,
total_population=N,
scenario=scenario,
seed=seed
)
confusion_matrix = ConfusionMatrix(matrix=confusion_matrix)
print(BENCHMARK_REPORT_TEMPLATE.format(
num_classes=M,
total_population=N,
scenario=scenario,
timing_matrix_creation=round(confusion_matrix.timings.get("matrix_creation", None), digits),
timing_class_statistics=round(confusion_matrix.timings.get("class_statistics", None), digits),
timing_overall_statistics=round(confusion_matrix.timings.get("overall_statistics", None), digits),
timing_total=round(confusion_matrix.timings.get("total", None), digits),
))
|