1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# -*- coding: utf-8 -*-
"""Class statistics functions."""
from __future__ import division
from typing import List, Tuple, Union
import math
def CI_calc_agresti(item1: float, item2: int, CV: float = 1.96) -> Tuple[Union[float, str], Union[float, str]]:
"""
Calculate confidence interval using Agresti-Coull method.
:param item1: parameter
:param item2: number of observations
:param CV: critical value
"""
try:
item3 = item2 * item1
mean = (item3 + (CV**2) / 2) / (item2 + CV**2)
error = math.sqrt(mean * (1 - mean) / (item2 + CV**2))
CI_down = mean - CV * error
CI_up = mean + CV * error
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def CI_calc_wilson(item1: float, item2: int, CV: float = 1.96) -> Tuple[Union[float, str], Union[float, str]]:
"""
Calculate confidence interval using Wilson method.
:param item1: parameter
:param item2: number of observations
:param CV: critical value
"""
try:
mean = (item1 + ((CV**2) / (2 * item2))) / (1 + (CV**2) / item2)
error = math.sqrt((item1 * (1 - item1) / item2) +
((CV**2) / (4 * item2**2)))
coef = CV / (1 + (CV**2) / item2)
CI_down = mean - coef * error
CI_up = mean + coef * error
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def AUC_SE_calc(AUC: float, P: int, N: int) -> Union[float, str]:
"""
Calculate AUC standard error.
:param AUC: AUC value
:param P: number of actual positives
:param N: number of actual negatives
"""
try:
q0 = AUC * (1 - AUC)
q1 = (AUC / (2 - AUC)) - AUC**2
q2 = ((2 * (AUC**2)) / (1 + AUC)) - AUC**2
result = math.sqrt((q0 + (N - 1) * q1 + (P - 1) * q2) / (P * N))
return result
except Exception:
return "None"
def LR_SE_calc(item1: int, item2: int, item3: int, item4: int) -> Union[float, str]:
"""
Calculate likelihood ratio +/- standard error.
:param item1: true positive or false negative (TP or FN)
:param item2: number of actual positives (P)
:param item3: false positive or true negative (FP or TN)
:param item4: number of actual negatives (N)
"""
try:
return math.sqrt((1 / item1) - (1 / item2) + (1 / item3) - (1 / item4))
except Exception:
return "None"
def LR_CI_calc(mean: float, SE: float, CV: float = 1.96) -> Tuple[Union[float, str], Union[float, str]]:
"""
Calculate confidence interval for likelihood ratio +/- using log method.
:param mean: mean of data
:param SE: standard error of data
:param CV: critical value
"""
try:
CI_down = math.exp(math.log(mean) - CV * SE)
CI_up = math.exp(math.log(mean) + CV * SE)
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def CI_calc(mean: float, SE: float, CV: float=1.96) -> Tuple[Union[float, str], Union[float, str]]:
"""
Calculate confidence interval.
:param mean: mean of data
:param SE: standard error of data
:param CV: critical value
"""
try:
CI_down = mean - CV * SE
CI_up = mean + CV * SE
return (CI_down, CI_up)
except Exception:
return ("None", "None")
def SE_calc(item1: float, item2: int) -> Union[float, str]:
"""
Calculate standard error with binomial distribution.
:param item1: parameter
:param item2: number of observations
"""
try:
return math.sqrt(
(item1 * (1 - item1)) / item2)
except Exception:
return "None"
def kappa_SE_calc(PA: float, PE: float, POP: int) -> Union[float, str]:
"""
Calculate kappa standard error.
:param PA: observed agreement among raters (overall accuracy)
:param PE: hypothetical probability of chance agreement (random accuracy)
:param POP: population or total number of samples
"""
try:
result = math.sqrt((PA * (1 - PA)) / (POP * ((1 - PE)**2)))
return result
except Exception:
return "None"
def __CI_class_handler__(cm: "pycm.ConfusionMatrix", param: str, CV: float,
binom_method: str = "normal-approx") -> dict:
"""
Handle CI calculation for class parameters.
:param cm: confusion matrix
:param param: input parameter
:param CV: critical value
:param binom_method: binomial confidence interval method
"""
result = {}
item1 = cm.class_stat[param]
if param == "TPR" or param == "FNR":
item2 = cm.class_stat["P"]
elif param == "TNR" or param == "FPR":
item2 = cm.class_stat["N"]
elif param == "PPV":
item2 = cm.class_stat["TOP"]
elif param == "NPV":
item2 = cm.class_stat["TON"]
elif param == "ACC" or param == "PRE":
item2 = cm.class_stat["POP"]
for i in cm.classes:
temp = []
if param == "PLR":
SE = LR_SE_calc(cm.TP[i], cm.P[i], cm.FP[i], cm.N[i])
CI = LR_CI_calc(cm.PLR[i], SE, CV)
elif param == "NLR":
SE = LR_SE_calc(cm.FN[i], cm.P[i], cm.TN[i], cm.N[i])
CI = LR_CI_calc(cm.NLR[i], SE, CV)
elif param == "AUC":
SE = AUC_SE_calc(cm.AUC[i], cm.P[i], cm.N[i])
CI = CI_calc(item1[i], SE, CV)
else:
SE = SE_calc(item1[i], item2[i])
if binom_method == "wilson":
CI = CI_calc_wilson(item1[i], item2[i], CV)
elif binom_method == "agresti-coull":
CI = CI_calc_agresti(item1[i], item2[i], CV)
else:
CI = CI_calc(item1[i], SE, CV)
temp.append(SE)
temp.append(CI)
result[i] = temp
return result
def __CI_overall_handler__(cm: "pycm.ConfusionMatrix", param: str, CV: float,
binom_method: str = "normal-approx") -> List[Union[float, tuple]]:
"""
Handle CI calculation for overall parameters.
:param cm: confusion matrix
:param param: input parameter
:param CV: critical value
:param binom_method: binomial confidence interval method
"""
result = []
population = list(cm.POP.values())[0]
if param == "Kappa":
SE = kappa_SE_calc(
cm.overall_stat["Overall ACC"],
cm.overall_stat["Overall RACC"],
population)
else:
SE = SE_calc(cm.overall_stat[param], population)
if binom_method == "wilson":
CI = CI_calc_wilson(cm.overall_stat[param], population, CV)
elif binom_method == "agresti-coull":
CI = CI_calc_agresti(cm.overall_stat[param], population, CV)
else:
CI = CI_calc(cm.overall_stat[param], SE, CV)
result.append(SE)
result.append(CI)
return result
|