1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
# -*- coding: utf-8 -*-
"""ConfusionMatrix module."""
from __future__ import division
from typing import Union, List, Dict, Any, Tuple, Callable, Generator, Optional
from .errors import pycmVectorError, pycmMatrixError, pycmCIError, pycmAverageError, pycmPlotError
from .handlers import __class_stat_init__, __overall_stat_init__
from .handlers import __obj_assign_handler__, __obj_file_handler__, __obj_matrix_handler__, __obj_vector_handler__, __obj_array_handler__
from .handlers import __imbalancement_handler__
from .class_funcs import F_calc, IBA_calc, TI_calc, NB_calc, sensitivity_index_calc
from .overall_funcs import weighted_kappa_calc, weighted_alpha_calc, alpha2_calc, brier_score_calc, log_loss_calc
from .distance import DistanceType, DISTANCE_MAPPER
from .output import *
from .utils import *
from .params import *
from .ci import __CI_overall_handler__, __CI_class_handler__
import os
import json
import numpy
import time
from warnings import warn
class ConfusionMatrix():
"""
Confusion matrix class.
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
>>> cm = ConfusionMatrix(y_actu, y_pred)
>>> cm.classes
[0, 1, 2]
>>> cm.table
{0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
>>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2": 2}, "Class2": {"Class1": 0, "Class2": 5}})
>>> cm2
pycm.ConfusionMatrix(classes: ['Class1', 'Class2'])
"""
def __init__(
self,
actual_vector: Optional[Union[List[Any], numpy.ndarray]] = None,
predict_vector: Optional[Union[List[Any], numpy.ndarray]] = None,
matrix: Optional[Union[Dict[str, Dict[str, int]], List[List[int]], numpy.ndarray]] = None,
digit: int = 5,
threshold: Optional[Callable] = None,
file: Optional[TextIOWrapper] = None,
sample_weight: Optional[Union[List[float], numpy.ndarray]] = None,
transpose: bool = False,
classes: Optional[List[Any]] = None,
is_imbalanced: Optional[bool] = None,
metrics_off: bool = False) -> None:
"""
Init method.
:param actual_vector: actual vector
:param predict_vector: vector of predictions
:param matrix: the confusion matrix
:param digit: scale (number of fraction digits)(default value: 5)
:param threshold: activation threshold function
:param file: saved confusion matrix file object
:param sample_weight: sample weights list
:param transpose: transpose flag
:param classes: ordered labels of classes
:param is_imbalanced: imbalance dataset flag
:param metrics_off: metrics off flag
"""
self.timings = {
"matrix_creation": 0.0,
"class_statistics": 0.0,
"overall_statistics": 0.0,
"total": 0.0
}
matrix_creation_start = time.perf_counter()
self.actual_vector = actual_vector
self.predict_vector = predict_vector
self.metrics_off = metrics_off
self.prob_vector = None
self.digit = digit
self.weights = None
self.classes = None
self.imbalance = None
if isinstance(transpose, bool):
self.transpose = transpose
else:
self.transpose = False
if isfile(file):
matrix_param = __obj_file_handler__(self, file)
elif isinstance(matrix, dict):
matrix_param = __obj_matrix_handler__(
matrix, classes, self.transpose)
elif isinstance(matrix, (list, numpy.ndarray)):
matrix_param = __obj_array_handler__(
matrix, classes, self.transpose)
else:
matrix_param = __obj_vector_handler__(
self, actual_vector, predict_vector, threshold, sample_weight, classes)
__obj_assign_handler__(self, matrix_param)
matrix_creation_end = time.perf_counter()
self.timings["matrix_creation"] = matrix_creation_end - matrix_creation_start
if not metrics_off:
class_statistics_start = time.perf_counter()
__class_stat_init__(self)
class_statistics_end = time.perf_counter()
self.timings["class_statistics"] = class_statistics_end - class_statistics_start
overall_statistics_start = time.perf_counter()
__overall_stat_init__(self)
overall_statistics_end = time.perf_counter()
self.timings["overall_statistics"] = overall_statistics_end - overall_statistics_start
__imbalancement_handler__(self, is_imbalanced)
self.binary = binary_check(self.classes)
self.recommended_list = statistic_recommend(
self.classes, self.imbalance)
self.sparse_matrix = None
self.sparse_normalized_matrix = None
self.positions = None
self.label_map = {x: x for x in self.classes}
self.timings["total"] = sum(self.timings.values())
def print_matrix(self,
one_vs_all: bool = False,
class_name: Any = None,
sparse: bool = False) -> None:
"""
Print confusion matrix.
:param one_vs_all: one-vs-all mode flag
:param class_name: target class name for one-vs-all mode
:param sparse: sparse mode printing flag
"""
classes = self.classes
table = self.table
if one_vs_all:
[classes, table] = one_vs_all_func(
classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
if sparse is True:
if self.sparse_matrix is None:
self.sparse_matrix = sparse_matrix_calc(classes, table)
print(sparse_table_print(self.sparse_matrix))
else:
print(table_print(classes, table))
if len(classes) >= CLASS_NUMBER_THRESHOLD:
warn(CLASS_NUMBER_WARNING, RuntimeWarning)
def print_normalized_matrix(
self,
one_vs_all: bool = False,
class_name: Any = None,
sparse: bool = False) -> None:
"""
Print normalized confusion matrix.
:param one_vs_all: one-vs-all mode flag
:param class_name: target class name for one-vs-all mode
:param sparse: sparse mode printing flag
"""
classes = self.classes
table = self.table
normalized_table = self.normalized_table
if one_vs_all:
[classes, table] = one_vs_all_func(
classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
normalized_table = normalized_table_calc(classes, table)
if sparse is True:
if self.sparse_normalized_matrix is None:
self.sparse_normalized_matrix = sparse_matrix_calc(
classes, normalized_table)
print(sparse_table_print(self.sparse_normalized_matrix))
else:
print(table_print(classes, normalized_table))
if len(classes) >= CLASS_NUMBER_THRESHOLD:
warn(CLASS_NUMBER_WARNING, RuntimeWarning)
def print_timings(self) -> None:
"""Print timings report."""
result = TIMINGS_TEMPLATE.format(matrix_creation=self.timings["matrix_creation"],
class_statistics=self.timings["class_statistics"],
overall_statistics=self.timings["overall_statistics"],
total=self.timings["total"])
print(result)
@metrics_off_check
def stat(
self,
overall_param: Optional[List[str]] = None,
class_param: Optional[List[str]] = None,
class_name: Optional[List[Any]] = None,
summary: bool = False) -> None:
"""
Print statistical measures table.
:param overall_param: overall parameters list for print, Example: ["Kappa", "Scott PI"]
:param class_param: class parameters list for print, Example: ["TPR", "TNR", "AUC"]
:param class_name: class name (a subset of confusion matrix classes), Example: [1, 2, 3]
:param summary: summary mode flag
"""
classes = class_filter(self.classes, class_name)
class_list = class_param
overall_list = overall_param
if summary:
class_list = SUMMARY_CLASS
overall_list = SUMMARY_OVERALL
print(
stat_print(
classes,
self.class_stat,
self.overall_stat,
self.digit, overall_list, class_list))
if len(classes) >= CLASS_NUMBER_THRESHOLD:
warn(CLASS_NUMBER_WARNING, RuntimeWarning)
def __str__(self) -> str:
"""Confusion matrix object string representation method."""
result = table_print(self.classes, self.table)
result += "\n" * 4
result += stat_print(self.classes, self.class_stat,
self.overall_stat, self.digit)
if len(self.classes) >= CLASS_NUMBER_THRESHOLD:
warn(CLASS_NUMBER_WARNING, RuntimeWarning)
return result
def __iter__(self) -> Generator[Tuple[Any, Dict[Any, int]], None, None]:
"""Iterate through confusion matrix."""
for key in self.matrix:
yield key, self.matrix[key]
def __contains__(self, class_name: Any) -> bool:
"""
Check if the confusion matrix contains the given class name.
:param class_name: given class name
"""
return class_name in self.classes
def __getitem__(self, class_name: Any) -> Dict[Any, int]:
"""
Return the element(s) in the matrix corresponding to the given class name.
:param class_name: given class name
"""
return self.matrix[class_name]
def save_stat(
self,
name: str,
address: bool = True,
overall_param: Optional[List[str]] = None,
class_param: Optional[List[str]] = None,
class_name: Optional[List[Any]] = None,
summary: bool = False,
sparse: bool = False) -> Dict[str, Union[bool, str]]:
"""
Save the ConfusionMatrix object in .pycm (flat file format) and return the result as a dictionary.
:param name: filename
:param address: flag for address return
:param overall_param: overall parameters list for save, Example: ["Kappa", "Scott PI"]
:param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
:param class_name: class name (subset of classes names), Example: [1, 2, 3]
:param summary: summary mode flag
:param sparse: sparse mode printing flag
"""
try:
message = None
class_list = class_param
overall_list = overall_param
warning_message = ""
if summary:
class_list = SUMMARY_CLASS
overall_list = SUMMARY_OVERALL
classes = self.classes
table = self.table
file = open(name + ".pycm", "w", encoding="utf-8")
if sparse is True:
if self.sparse_matrix is None:
self.sparse_matrix = sparse_matrix_calc(classes, table)
matrix = "Matrix : \n\n" + \
sparse_table_print(self.sparse_matrix) + "\n\n"
if self.sparse_normalized_matrix is None:
self.sparse_normalized_matrix = sparse_matrix_calc(
classes, self.normalized_table)
normalized_matrix = "Normalized Matrix : \n\n" + \
sparse_table_print(self.sparse_normalized_matrix) + "\n\n"
else:
matrix = "Matrix : \n\n" + table_print(self.classes,
self.table) + "\n\n"
normalized_matrix = "Normalized Matrix : \n\n" + \
table_print(self.classes,
self.normalized_table) + "\n\n"
one_vs_all = "\nOne-Vs-All : \n\n"
for c in self.classes:
one_vs_all += str(c) + "-Vs-All : \n\n"
[classes, table] = one_vs_all_func(self.classes, self.table,
self.TP, self.TN, self.FP,
self.FN, c)
one_vs_all += table_print(classes, table) + "\n\n"
classes = class_filter(self.classes, class_name)
stat = stat_print(
classes,
self.class_stat,
self.overall_stat,
self.digit, overall_list, class_list)
if len(self.classes) >= CLASS_NUMBER_THRESHOLD:
warning_message = "\n" + "Warning : " + CLASS_NUMBER_WARNING + "\n"
file.write(
matrix +
normalized_matrix +
stat +
one_vs_all +
warning_message)
file.close()
if address:
message = os.path.join(
os.getcwd(), name + ".pycm") # pragma: no cover
return {"Status": True, "Message": message}
except Exception as e:
return {"Status": False, "Message": str(e)}
def save_html(
self,
name: str,
address: bool = True,
overall_param: Optional[List[str]] = None,
class_param: Optional[List[str]] = None,
class_name: Optional[List[Any]] = None,
color: Tuple[int, int, int] = (0, 0, 0),
normalize: bool = False,
summary: bool = False,
alt_link: bool = False,
shortener: bool = True) -> Dict[str, Union[bool, str]]:
"""
Save ConfusionMatrix in HTML file and return the result as a dictionary.
:param name: filename
:param address: flag for address return
:param overall_param: overall parameters list for save, Example: ["Kappa", "Scott PI"]
:param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
:param class_name: class name (subset of classes names), Example: [1, 2, 3]
:param color: matrix color in RGB as (R, G, B)
:param normalize: save normalize matrix flag
:param summary: summary mode flag
:param alt_link: alternative link for document flag
:param shortener: class name shortener flag
"""
try:
class_list = class_param
overall_list = overall_param
if summary:
class_list = SUMMARY_CLASS
overall_list = SUMMARY_OVERALL
message = None
table = self.table
if normalize:
table = self.normalized_table
html_file = open(name + ".html", "w", encoding="utf-8")
html_file.write(HTML_INIT_TEMPLATE.format(description=OG_DESCRIPTION, image_url=OG_IMAGE_URL))
html_file.write(html_dataset_type(self.binary, self.imbalance))
html_file.write(
html_table(
self.classes,
table,
color,
normalize,
shortener))
html_file.write(
html_overall_stat(
self.overall_stat,
self.digit,
overall_list,
self.recommended_list,
alt_link))
class_stat_classes = class_filter(self.classes, class_name)
html_file.write(
html_class_stat(
class_stat_classes,
self.class_stat,
self.digit,
class_list,
self.recommended_list,
alt_link))
html_file.write(HTML_END_TEMPLATE.format(version=PYCM_VERSION))
html_file.close()
if address:
message = os.path.join(
os.getcwd(), name + ".html") # pragma: no cover
return {"Status": True, "Message": message}
except Exception as e:
return {"Status": False, "Message": str(e)}
def save_csv(
self,
name: str,
address: bool = True,
class_param: Optional[List[str]] = None,
class_name: Optional[List[Any]] = None,
matrix_save: bool = True,
normalize: bool = False,
summary: bool = False,
header: bool = False) -> Dict[str, Union[bool, str]]:
"""
Save ConfusionMatrix in csv file and return the result as a dictionary.
:param name: filename
:param address: flag for address return
:param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
:param class_name: class name (subset of classes names), Example: [1, 2, 3]
:param matrix_save: save matrix flag
:param normalize: save normalize matrix flag
:param summary: summary mode flag
:param header: add headers to csv file
"""
try:
class_list = class_param
if summary:
class_list = SUMMARY_CLASS
message = None
classes = class_filter(self.classes, class_name)
csv_file = open(name + ".csv", "w", encoding="utf-8")
csv_data = csv_print(
classes,
self.class_stat,
self.digit,
class_list)
csv_file.write(csv_data)
if matrix_save:
matrix = self.table
if normalize:
matrix = self.normalized_table
csv_matrix_file = open(
name + "_matrix" + ".csv", "w", encoding="utf-8")
csv_matrix_data = csv_matrix_print(
self.classes, matrix, header=header)
csv_matrix_file.write(csv_matrix_data)
if address:
message = os.path.join(
os.getcwd(), name + ".csv") # pragma: no cover
return {"Status": True, "Message": message}
except Exception as e:
return {"Status": False, "Message": str(e)}
def save_obj(
self,
name: str,
address: bool = True,
save_stat: bool = False,
save_vector: bool = True) -> Dict[str, Union[bool, str]]:
"""
Save ConfusionMatrix object in .obj file and return the result as a dictionary.
:param name: filename
:param address: flag for address return
:param save_stat: save statistics flag
:param save_vector: save vectors flag
"""
try:
message = None
obj_file = open(name + ".obj", "w")
actual_vector_temp = self.actual_vector
predict_vector_temp = self.predict_vector
prob_vector_temp = self.prob_vector
weights_vector_temp = self.weights
matrix_temp = {k: self.table[k].copy() for k in self.classes}
matrix_items = []
for i in self.classes:
matrix_items.append((i, list(matrix_temp[i].items())))
actual_vector_temp, predict_vector_temp, prob_vector_temp, weights_vector_temp = map(
vector_serializer, [
actual_vector_temp, predict_vector_temp, prob_vector_temp, weights_vector_temp])
dump_dict = {"Actual-Vector": actual_vector_temp,
"Predict-Vector": predict_vector_temp,
"Prob-Vector": prob_vector_temp,
"Matrix": matrix_items,
"Digit": self.digit,
"Sample-Weight": weights_vector_temp,
"Transpose": self.transpose,
"Imbalanced": self.imbalance}
if save_stat:
dump_dict["Class-Stat"] = self.class_stat
dump_dict["Overall-Stat"] = self.overall_stat
if not save_vector:
dump_dict["Actual-Vector"] = None
dump_dict["Predict-Vector"] = None
dump_dict["Prob-Vector"] = None
dump_dict["Sample-Weight"] = None
json.dump(dump_dict, obj_file)
if address:
message = os.path.join(
os.getcwd(), name + ".obj") # pragma: no cover
return {"Status": True, "Message": message}
except Exception as e:
return {"Status": False, "Message": str(e)}
def F_beta(self, beta: float) -> Dict[str, float]:
"""
Calculate FBeta score for all classes.
:param beta: beta parameter
"""
try:
F_dict = {}
for i in self.TP:
F_dict[i] = F_calc(
TP=self.TP[i],
FP=self.FP[i],
FN=self.FN[i],
beta=beta)
return F_dict
except Exception:
return {}
@metrics_off_check
def sensitivity_index(self) -> Dict[str, float]:
"""Calculate sensitivity index for all classes."""
sensitivity_index_dict = {}
for i in self.classes:
sensitivity_index_dict[i] = sensitivity_index_calc(
self.TPR[i], self.FPR[i])
return sensitivity_index_dict
@metrics_off_check
def IBA_alpha(self, alpha: float) -> Dict[str, float]:
"""
Calculate IBA_alpha score for all classes.
:param alpha: alpha parameter
"""
try:
IBA_dict = {}
for i in self.classes:
IBA_dict[i] = IBA_calc(self.TPR[i], self.TNR[i], alpha=alpha)
return IBA_dict
except Exception:
return {}
def TI(self, alpha: float, beta: float) -> Dict[str, float]:
"""
Calculate Tversky index.
:param alpha: alpha coefficient
:param beta: beta coefficient
"""
try:
TI_dict = {}
for i in self.classes:
TI_dict[i] = TI_calc(
self.TP[i], self.FP[i], self.FN[i], alpha, beta)
return TI_dict
except Exception:
return {}
@metrics_off_check
def NB(self, w: float = 1.0) -> Dict[str, float]:
"""
Calculate Net benefit for all classes.
:param w: weight
"""
try:
NB_dict = {}
for i in self.classes:
NB_dict[i] = NB_calc(self.TP[i], self.FP[i], self.POP[i], w)
return NB_dict
except Exception:
return {}
def distance(self, metric: DistanceType) -> Dict[str, float]:
"""
Calculate distance/similarity for all classes.
:param metric: metric
"""
distance_dict = {}
if not isinstance(metric, DistanceType):
raise pycmMatrixError(DISTANCE_METRIC_TYPE_ERROR)
for i in self.classes:
distance_dict[i] = DISTANCE_MAPPER[metric](
TP=self.TP[i], FP=self.FP[i], FN=self.FN[i], TN=self.TN[i])
return distance_dict
def dissimilarity_matrix(self) -> Dict[str, Dict[str, int]]:
"""Calculate dissimilarity matrix."""
result = {class_name: dict(zip(self.classes, [0] * len(self.classes))) for class_name in self.classes}
matrix_array = self.to_array()
for class_index_1, class_name_1 in enumerate(self.classes):
for class_index_2, class_name_2 in enumerate(self.classes):
dist = int(sum(abs(matrix_array[class_index_1] - matrix_array[class_index_2])))
result[class_name_1][class_name_2] = dist
return result
@metrics_off_check
def CI(
self,
param: str,
alpha: float = 0.05,
one_sided: bool = False,
binom_method: str = "normal-approx") -> Dict[str, Tuple[float, float]]:
"""
Calculate CI.
:param param: input parameter
:param alpha: type I error
:param one_sided: one-sided mode flag
:param binom_method: binomial confidence intervals method
"""
if isinstance(param, str):
method = "normal-approx"
if isinstance(binom_method, str):
method = binom_method.lower()
if one_sided:
if alpha in ALPHA_ONE_SIDE_TABLE:
CV = ALPHA_ONE_SIDE_TABLE[alpha]
else:
CV = ALPHA_ONE_SIDE_TABLE[0.05]
warn(CI_ALPHA_ONE_SIDE_WARNING, RuntimeWarning)
else:
if alpha in ALPHA_TWO_SIDE_TABLE:
CV = ALPHA_TWO_SIDE_TABLE[alpha]
else:
CV = ALPHA_TWO_SIDE_TABLE[0.05]
warn(CI_ALPHA_TWO_SIDE_WARNING, RuntimeWarning)
param_u = param.upper()
if param_u in CI_CLASS_LIST:
return __CI_class_handler__(self, param_u, CV, method)
if param in CI_OVERALL_LIST:
return __CI_overall_handler__(self, param, CV, method)
raise pycmCIError(CI_SUPPORT_ERROR)
raise pycmCIError(CI_FORMAT_ERROR)
def __repr__(self) -> str:
"""Confusion matrix object representation method."""
return "pycm.ConfusionMatrix(classes: " + str(self.classes) + ")"
def __len__(self) -> int:
"""Confusion matrix object length method."""
return len(self.classes)
def __eq__(self, other: Any) -> bool:
"""
Confusion matrix equal method.
:param other: the other confusion matrix
"""
if isinstance(other, ConfusionMatrix):
return self.table == other.table
return False
def __ne__(self, other: Any) -> bool:
"""
Confusion matrix not equal method.
:param other: the other confusion matrix
"""
return not self.__eq__(other)
def __copy__(self) -> "ConfusionMatrix":
"""Create a copy of the confusion matrix."""
_class = self.__class__
result = _class.__new__(_class)
result.__dict__.update(self.__dict__)
return result
def copy(self) -> "ConfusionMatrix":
"""Create a copy of the confusion matrix."""
return self.__copy__()
def relabel(self, mapping: Dict[Any, Any], sort: bool = False) -> None:
"""
Rename the confusion matrix classes.
:param mapping: mapping dictionary
:param sort: flag for sorting new classes
"""
if not isinstance(mapping, dict):
raise pycmMatrixError(MAPPING_FORMAT_ERROR)
if set(self.classes) != set(mapping):
raise pycmMatrixError(MAPPING_CLASS_NAME_ERROR)
if len(self.classes) != len(set(mapping.values())):
raise pycmMatrixError(MAPPING_CLASS_NAME_ERROR)
table_temp = {}
normalized_table_temp = {}
for row in self.classes:
temp_dict = {}
temp_dict_normalized = {}
for col in self.classes:
temp_dict[mapping[col]] = self.table[row][col]
temp_dict_normalized[mapping[col]
] = self.normalized_table[row][col]
table_temp[mapping[row]] = temp_dict
normalized_table_temp[mapping[row]] = temp_dict_normalized
self.table = table_temp
self.normalized_table = normalized_table_temp
self.matrix = self.table
self.normalized_matrix = self.normalized_table
for param in self.class_stat:
temp_dict = {}
for classname in self.classes:
temp_dict[mapping[classname]
] = self.class_stat[param][classname]
self.class_stat[param] = temp_dict
temp_label_map = {}
for prime_label, new_label in self.label_map.items():
temp_label_map[prime_label] = mapping[new_label]
self.label_map = temp_label_map
self.positions = None
self.classes = [mapping[x] for x in self.classes]
if sort:
self.classes = sorted(self.classes)
self.TP = self.class_stat["TP"]
self.TN = self.class_stat["TN"]
self.FP = self.class_stat["FP"]
self.FN = self.class_stat["FN"]
__class_stat_init__(self)
@metrics_off_check
def average(self, param: str, none_omit: bool = False) -> Union[float, str]:
"""
Calculate the average of the input parameter.
:param param: input parameter
:param none_omit: none items omitting flag
"""
return self.weighted_average(
param=param,
weight=self.POP,
none_omit=none_omit)
@metrics_off_check
def weighted_average(self, param: str, weight: Optional[Dict[Any, float]]
= None, none_omit: bool = False) -> Union[float, str]:
"""
Calculate the weighted average of the input parameter.
:param param: input parameter
:param weight: explicitly passes weights
:param none_omit: none items omitting flag
"""
selected_weight = self.P.copy()
if weight is not None:
if not isinstance(weight, dict):
raise pycmAverageError(AVERAGE_WEIGHT_ERROR)
if set(weight) == set(self.classes) and all(
[isfloat(x) for x in weight.values()]):
selected_weight = weight.copy()
else:
raise pycmAverageError(AVERAGE_WEIGHT_ERROR)
if param in self.class_stat:
selected_param = self.class_stat[param]
else:
raise pycmAverageError(AVERAGE_INVALID_ERROR)
try:
weight_list = []
param_list = []
for class_name in selected_param:
if selected_param[class_name] == "None" and none_omit:
continue
weight_list.append(selected_weight[class_name])
param_list.append(selected_param[class_name])
return numpy.average(param_list, weights=weight_list)
except Exception:
return "None"
@metrics_off_check
def weighted_kappa(self, weight: Optional[Dict[Any, Dict[Any, float]]] = None) -> float:
"""
Calculate weighted kappa.
:param weight: weight matrix
"""
if matrix_check(weight) is False:
warn(WEIGHTED_KAPPA_WARNING, RuntimeWarning)
return self.Kappa
if set(weight) != set(self.classes):
warn(WEIGHTED_KAPPA_WARNING, RuntimeWarning)
return self.Kappa
return weighted_kappa_calc(
self.classes,
self.table,
self.P,
self.TOP,
self.POP,
weight)
@metrics_off_check
def weighted_alpha(self, weight: Optional[Dict[Any, Dict[Any, float]]] = None) -> float:
"""
Calculate weighted Krippendorff's alpha.
:param weight: weight matrix
"""
if matrix_check(weight) is False:
warn(WEIGHTED_ALPHA_WARNING, RuntimeWarning)
return self.Alpha
if set(weight) != set(self.classes):
warn(WEIGHTED_ALPHA_WARNING, RuntimeWarning)
return self.Alpha
return weighted_alpha_calc(
self.classes,
self.table,
self.P,
self.TOP,
self.POP,
weight)
@metrics_off_check
def aickin_alpha(self, max_iter: int = 200, epsilon: float = 0.0001) -> float:
"""
Calculate Aickin's alpha.
:param max_iter: maximum number of iterations
:param epsilon: difference threshold
"""
return alpha2_calc(
self.TOP,
self.P,
self.Overall_ACC,
self.POP,
self.classes,
max_iter,
epsilon)
def brier_score(self, pos_class: Optional[Any] = None) -> float:
"""
Calculate Brier score.
:param pos_class: positive class name
"""
if self.prob_vector is None or not self.binary:
raise pycmVectorError(BRIER_LOG_LOSS_PROB_ERROR)
if pos_class is None and isinstance(self.classes[0], str):
raise pycmVectorError(BRIER_LOG_LOSS_CLASS_ERROR)
return brier_score_calc(
self.classes,
self.prob_vector,
self.actual_vector,
self.weights,
pos_class)
def log_loss(self, normalize: bool = True, pos_class: Optional[Any] = None) -> float:
"""
Calculate Log loss.
:param normalize: normalization flag
:param pos_class: positive class name
"""
if self.prob_vector is None or not self.binary:
raise pycmVectorError(BRIER_LOG_LOSS_PROB_ERROR)
if pos_class is None and isinstance(self.classes[0], str):
raise pycmVectorError(BRIER_LOG_LOSS_CLASS_ERROR)
return log_loss_calc(
self.classes,
self.prob_vector,
self.actual_vector,
normalize,
self.weights,
pos_class)
def position(self) -> Dict[Any, Dict[str, List[int]]]:
"""Return indices of TP, FP, TN and FN in the predict_vector."""
if self.predict_vector is None or self.actual_vector is None:
raise pycmVectorError(VECTOR_ONLY_ERROR)
if self.positions is None:
classes = list(self.label_map)
positions = {
self.label_map[_class]: {
'TP': [],
'FP': [],
'TN': [],
'FN': []} for _class in classes}
[actual_vector, predict_vector] = vector_filter(
self.actual_vector, self.predict_vector)
for index, observation in enumerate(predict_vector):
for _class in classes:
label = self.label_map[_class]
if observation == actual_vector[index]:
if _class == observation:
positions[label]['TP'].append(index)
else:
positions[label]['TN'].append(index)
else:
if _class == observation:
positions[label]['FP'].append(index)
elif _class == actual_vector[index]:
positions[label]['FN'].append(index)
else:
positions[label]['TN'].append(index)
self.positions = positions
return self.positions
def to_array(self, normalized: bool = False, one_vs_all: bool = False,
class_name: Optional[Any] = None) -> numpy.ndarray:
"""
Return the confusion matrix in form of a numpy array.
:param normalized: a flag for getting normalized confusion matrix
:param one_vs_all: one-vs-all mode flag
:param class_name: target class name for one-vs-all mode
"""
classes = self.classes
table = self.table
if normalized:
table = self.normalized_table
if one_vs_all:
[classes, table] = one_vs_all_func(
classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
if normalized:
table = normalized_table_calc(classes, table)
array = []
for key in classes:
row = [table[key][i] for i in classes]
array.append(row)
return numpy.array(array)
def combine(self, other: "ConfusionMatrix", metrics_off: bool = False) -> "ConfusionMatrix":
"""
Return the combination of two confusion matrices.
:param other: the other matrix that is going to be combined
:param metrics_off: metrics off flag
"""
if isinstance(other, ConfusionMatrix) is False:
raise pycmMatrixError(COMBINE_TYPE_ERROR)
return ConfusionMatrix(
matrix=matrix_combine(
self.matrix, other.matrix), metrics_off=metrics_off)
def plot(
self,
normalized: bool = False,
one_vs_all: bool = False,
class_name: Optional[Any] = None,
title: str = 'Confusion Matrix',
number_label: bool = False,
cmap: Optional["matplotlib.colors.Color.ListedColormap"] = None,
plot_lib: str = 'matplotlib') -> "matplotlib.pyplot.Axes":
"""
Plot confusion matrix and return the plot axes.
:param normalized: normalized flag for matrix
:param one_vs_all: one-vs-all mode flag
:param class_name: target class name for one-vs-all mode
:param title: plot title
:param number_label: number label flag
:param cmap: color map
:param plot_lib: plotting library
"""
matrix = self.to_array(
normalized=normalized,
one_vs_all=one_vs_all,
class_name=class_name)
classes = self.classes
if normalized:
title += " (Normalized)"
if one_vs_all and class_name in classes:
classes = [class_name, '~']
try:
from matplotlib import pyplot as plt
except (ModuleNotFoundError, ImportError):
raise pycmPlotError(MATPLOTLIB_PLOT_LIBRARY_ERROR)
if cmap is None:
cmap = plt.cm.gray_r
fig, ax = plt.subplots()
fig.canvas.manager.set_window_title(title)
if plot_lib == 'seaborn':
try:
import seaborn as sns
except (ModuleNotFoundError, ImportError):
raise pycmPlotError(SEABORN_PLOT_LIBRARY_ERROR)
ax = sns.heatmap(matrix, cmap=cmap)
return axes_gen(
ax,
classes,
matrix,
title,
cmap,
number_label,
plot_lib)
plt.imshow(matrix, cmap=cmap)
plt.colorbar()
return axes_gen(
ax,
classes,
matrix,
title,
cmap,
number_label,
plot_lib)
|