File: cm.py

package info (click to toggle)
python-pycm 4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,044 kB
  • sloc: python: 5,361; sh: 8; makefile: 6
file content (985 lines) | stat: -rw-r--r-- 38,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
# -*- coding: utf-8 -*-
"""ConfusionMatrix module."""
from __future__ import division
from typing import Union, List, Dict, Any, Tuple, Callable, Generator, Optional
from .errors import pycmVectorError, pycmMatrixError, pycmCIError, pycmAverageError, pycmPlotError
from .handlers import __class_stat_init__, __overall_stat_init__
from .handlers import __obj_assign_handler__, __obj_file_handler__, __obj_matrix_handler__, __obj_vector_handler__, __obj_array_handler__
from .handlers import __imbalancement_handler__
from .class_funcs import F_calc, IBA_calc, TI_calc, NB_calc, sensitivity_index_calc
from .overall_funcs import weighted_kappa_calc, weighted_alpha_calc, alpha2_calc, brier_score_calc, log_loss_calc
from .distance import DistanceType, DISTANCE_MAPPER
from .output import *
from .utils import *
from .params import *
from .ci import __CI_overall_handler__, __CI_class_handler__
import os
import json
import numpy
import time
from warnings import warn


class ConfusionMatrix():
    """
    Confusion matrix class.

    >>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
    >>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
    >>> cm = ConfusionMatrix(y_actu, y_pred)
    >>> cm.classes
    [0, 1, 2]
    >>> cm.table
    {0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
    >>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2": 2}, "Class2": {"Class1": 0, "Class2": 5}})
    >>> cm2
    pycm.ConfusionMatrix(classes: ['Class1', 'Class2'])
    """

    def __init__(
            self,
            actual_vector: Optional[Union[List[Any], numpy.ndarray]] = None,
            predict_vector: Optional[Union[List[Any], numpy.ndarray]] = None,
            matrix: Optional[Union[Dict[str, Dict[str, int]], List[List[int]], numpy.ndarray]] = None,
            digit: int = 5,
            threshold: Optional[Callable] = None,
            file: Optional[TextIOWrapper] = None,
            sample_weight: Optional[Union[List[float], numpy.ndarray]] = None,
            transpose: bool = False,
            classes: Optional[List[Any]] = None,
            is_imbalanced: Optional[bool] = None,
            metrics_off: bool = False) -> None:
        """
        Init method.

        :param actual_vector: actual vector
        :param predict_vector: vector of predictions
        :param matrix: the confusion matrix
        :param digit: scale (number of fraction digits)(default value: 5)
        :param threshold: activation threshold function
        :param file: saved confusion matrix file object
        :param sample_weight: sample weights list
        :param transpose: transpose flag
        :param classes: ordered labels of classes
        :param is_imbalanced: imbalance dataset flag
        :param metrics_off: metrics off flag
        """
        self.timings = {
            "matrix_creation": 0.0,
            "class_statistics": 0.0,
            "overall_statistics": 0.0,
            "total": 0.0
        }
        matrix_creation_start = time.perf_counter()
        self.actual_vector = actual_vector
        self.predict_vector = predict_vector
        self.metrics_off = metrics_off
        self.prob_vector = None
        self.digit = digit
        self.weights = None
        self.classes = None
        self.imbalance = None
        if isinstance(transpose, bool):
            self.transpose = transpose
        else:
            self.transpose = False
        if isfile(file):
            matrix_param = __obj_file_handler__(self, file)
        elif isinstance(matrix, dict):
            matrix_param = __obj_matrix_handler__(
                matrix, classes, self.transpose)
        elif isinstance(matrix, (list, numpy.ndarray)):
            matrix_param = __obj_array_handler__(
                matrix, classes, self.transpose)
        else:
            matrix_param = __obj_vector_handler__(
                self, actual_vector, predict_vector, threshold, sample_weight, classes)
        __obj_assign_handler__(self, matrix_param)
        matrix_creation_end = time.perf_counter()
        self.timings["matrix_creation"] = matrix_creation_end - matrix_creation_start
        if not metrics_off:
            class_statistics_start = time.perf_counter()
            __class_stat_init__(self)
            class_statistics_end = time.perf_counter()
            self.timings["class_statistics"] = class_statistics_end - class_statistics_start
            overall_statistics_start = time.perf_counter()
            __overall_stat_init__(self)
            overall_statistics_end = time.perf_counter()
            self.timings["overall_statistics"] = overall_statistics_end - overall_statistics_start
            __imbalancement_handler__(self, is_imbalanced)
        self.binary = binary_check(self.classes)
        self.recommended_list = statistic_recommend(
            self.classes, self.imbalance)
        self.sparse_matrix = None
        self.sparse_normalized_matrix = None
        self.positions = None
        self.label_map = {x: x for x in self.classes}
        self.timings["total"] = sum(self.timings.values())

    def print_matrix(self,
                     one_vs_all: bool = False,
                     class_name: Any = None,
                     sparse: bool = False) -> None:
        """
        Print confusion matrix.

        :param one_vs_all: one-vs-all mode flag
        :param class_name: target class name for one-vs-all mode
        :param sparse: sparse mode printing flag
        """
        classes = self.classes
        table = self.table
        if one_vs_all:
            [classes, table] = one_vs_all_func(
                classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
        if sparse is True:
            if self.sparse_matrix is None:
                self.sparse_matrix = sparse_matrix_calc(classes, table)
            print(sparse_table_print(self.sparse_matrix))
        else:
            print(table_print(classes, table))
        if len(classes) >= CLASS_NUMBER_THRESHOLD:
            warn(CLASS_NUMBER_WARNING, RuntimeWarning)

    def print_normalized_matrix(
            self,
            one_vs_all: bool = False,
            class_name: Any = None,
            sparse: bool = False) -> None:
        """
        Print normalized confusion matrix.

        :param one_vs_all: one-vs-all mode flag
        :param class_name: target class name for one-vs-all mode
        :param sparse: sparse mode printing flag
        """
        classes = self.classes
        table = self.table
        normalized_table = self.normalized_table
        if one_vs_all:
            [classes, table] = one_vs_all_func(
                classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
            normalized_table = normalized_table_calc(classes, table)
        if sparse is True:
            if self.sparse_normalized_matrix is None:
                self.sparse_normalized_matrix = sparse_matrix_calc(
                    classes, normalized_table)
            print(sparse_table_print(self.sparse_normalized_matrix))
        else:
            print(table_print(classes, normalized_table))
        if len(classes) >= CLASS_NUMBER_THRESHOLD:
            warn(CLASS_NUMBER_WARNING, RuntimeWarning)

    def print_timings(self) -> None:
        """Print timings report."""
        result = TIMINGS_TEMPLATE.format(matrix_creation=self.timings["matrix_creation"],
                                         class_statistics=self.timings["class_statistics"],
                                         overall_statistics=self.timings["overall_statistics"],
                                         total=self.timings["total"])
        print(result)

    @metrics_off_check
    def stat(
            self,
            overall_param: Optional[List[str]] = None,
            class_param: Optional[List[str]] = None,
            class_name: Optional[List[Any]] = None,
            summary: bool = False) -> None:
        """
        Print statistical measures table.

        :param overall_param: overall parameters list for print, Example: ["Kappa", "Scott PI"]
        :param class_param: class parameters list for print, Example: ["TPR", "TNR", "AUC"]
        :param class_name: class name (a subset of confusion matrix classes), Example: [1, 2, 3]
        :param summary: summary mode flag
        """
        classes = class_filter(self.classes, class_name)
        class_list = class_param
        overall_list = overall_param
        if summary:
            class_list = SUMMARY_CLASS
            overall_list = SUMMARY_OVERALL
        print(
            stat_print(
                classes,
                self.class_stat,
                self.overall_stat,
                self.digit, overall_list, class_list))
        if len(classes) >= CLASS_NUMBER_THRESHOLD:
            warn(CLASS_NUMBER_WARNING, RuntimeWarning)

    def __str__(self) -> str:
        """Confusion matrix object string representation method."""
        result = table_print(self.classes, self.table)
        result += "\n" * 4
        result += stat_print(self.classes, self.class_stat,
                             self.overall_stat, self.digit)
        if len(self.classes) >= CLASS_NUMBER_THRESHOLD:
            warn(CLASS_NUMBER_WARNING, RuntimeWarning)
        return result

    def __iter__(self) -> Generator[Tuple[Any, Dict[Any, int]], None, None]:
        """Iterate through confusion matrix."""
        for key in self.matrix:
            yield key, self.matrix[key]

    def __contains__(self, class_name: Any) -> bool:
        """
        Check if the confusion matrix contains the given class name.

        :param class_name: given class name
        """
        return class_name in self.classes

    def __getitem__(self, class_name: Any) -> Dict[Any, int]:
        """
        Return the element(s) in the matrix corresponding to the given class name.

        :param class_name: given class name
        """
        return self.matrix[class_name]

    def save_stat(
            self,
            name: str,
            address: bool = True,
            overall_param: Optional[List[str]] = None,
            class_param: Optional[List[str]] = None,
            class_name: Optional[List[Any]] = None,
            summary: bool = False,
            sparse: bool = False) -> Dict[str, Union[bool, str]]:
        """
        Save the ConfusionMatrix object in .pycm (flat file format) and return the result as a dictionary.

        :param name: filename
        :param address: flag for address return
        :param overall_param: overall parameters list for save, Example: ["Kappa", "Scott PI"]
        :param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
        :param class_name: class name (subset of classes names), Example: [1, 2, 3]
        :param summary: summary mode flag
        :param sparse: sparse mode printing flag
        """
        try:
            message = None
            class_list = class_param
            overall_list = overall_param
            warning_message = ""
            if summary:
                class_list = SUMMARY_CLASS
                overall_list = SUMMARY_OVERALL
            classes = self.classes
            table = self.table
            file = open(name + ".pycm", "w", encoding="utf-8")
            if sparse is True:
                if self.sparse_matrix is None:
                    self.sparse_matrix = sparse_matrix_calc(classes, table)
                matrix = "Matrix : \n\n" + \
                    sparse_table_print(self.sparse_matrix) + "\n\n"
                if self.sparse_normalized_matrix is None:
                    self.sparse_normalized_matrix = sparse_matrix_calc(
                        classes, self.normalized_table)
                normalized_matrix = "Normalized Matrix : \n\n" + \
                    sparse_table_print(self.sparse_normalized_matrix) + "\n\n"
            else:
                matrix = "Matrix : \n\n" + table_print(self.classes,
                                                       self.table) + "\n\n"
                normalized_matrix = "Normalized Matrix : \n\n" + \
                                    table_print(self.classes,
                                                self.normalized_table) + "\n\n"
            one_vs_all = "\nOne-Vs-All : \n\n"
            for c in self.classes:
                one_vs_all += str(c) + "-Vs-All : \n\n"
                [classes, table] = one_vs_all_func(self.classes, self.table,
                                                   self.TP, self.TN, self.FP,
                                                   self.FN, c)
                one_vs_all += table_print(classes, table) + "\n\n"
            classes = class_filter(self.classes, class_name)
            stat = stat_print(
                classes,
                self.class_stat,
                self.overall_stat,
                self.digit, overall_list, class_list)
            if len(self.classes) >= CLASS_NUMBER_THRESHOLD:
                warning_message = "\n" + "Warning : " + CLASS_NUMBER_WARNING + "\n"
            file.write(
                matrix +
                normalized_matrix +
                stat +
                one_vs_all +
                warning_message)
            file.close()
            if address:
                message = os.path.join(
                    os.getcwd(), name + ".pycm")  # pragma: no cover
            return {"Status": True, "Message": message}
        except Exception as e:
            return {"Status": False, "Message": str(e)}

    def save_html(
            self,
            name: str,
            address: bool = True,
            overall_param: Optional[List[str]] = None,
            class_param: Optional[List[str]] = None,
            class_name: Optional[List[Any]] = None,
            color: Tuple[int, int, int] = (0, 0, 0),
            normalize: bool = False,
            summary: bool = False,
            alt_link: bool = False,
            shortener: bool = True) -> Dict[str, Union[bool, str]]:
        """
        Save ConfusionMatrix in HTML file and return the result as a dictionary.

        :param name: filename
        :param address: flag for address return
        :param overall_param: overall parameters list for save, Example: ["Kappa", "Scott PI"]
        :param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
        :param class_name: class name (subset of classes names), Example: [1, 2, 3]
        :param color: matrix color in RGB as (R, G, B)
        :param normalize: save normalize matrix flag
        :param summary: summary mode flag
        :param alt_link: alternative link for document flag
        :param shortener: class name shortener flag
        """
        try:
            class_list = class_param
            overall_list = overall_param
            if summary:
                class_list = SUMMARY_CLASS
                overall_list = SUMMARY_OVERALL
            message = None
            table = self.table
            if normalize:
                table = self.normalized_table
            html_file = open(name + ".html", "w", encoding="utf-8")
            html_file.write(HTML_INIT_TEMPLATE.format(description=OG_DESCRIPTION, image_url=OG_IMAGE_URL))
            html_file.write(html_dataset_type(self.binary, self.imbalance))
            html_file.write(
                html_table(
                    self.classes,
                    table,
                    color,
                    normalize,
                    shortener))
            html_file.write(
                html_overall_stat(
                    self.overall_stat,
                    self.digit,
                    overall_list,
                    self.recommended_list,
                    alt_link))
            class_stat_classes = class_filter(self.classes, class_name)
            html_file.write(
                html_class_stat(
                    class_stat_classes,
                    self.class_stat,
                    self.digit,
                    class_list,
                    self.recommended_list,
                    alt_link))
            html_file.write(HTML_END_TEMPLATE.format(version=PYCM_VERSION))
            html_file.close()
            if address:
                message = os.path.join(
                    os.getcwd(), name + ".html")  # pragma: no cover
            return {"Status": True, "Message": message}
        except Exception as e:
            return {"Status": False, "Message": str(e)}

    def save_csv(
            self,
            name: str,
            address: bool = True,
            class_param: Optional[List[str]] = None,
            class_name: Optional[List[Any]] = None,
            matrix_save: bool = True,
            normalize: bool = False,
            summary: bool = False,
            header: bool = False) -> Dict[str, Union[bool, str]]:
        """
        Save ConfusionMatrix in csv file and return the result as a dictionary.

        :param name: filename
        :param address: flag for address return
        :param class_param: class parameters list for save, Example: ["TPR", "TNR", "AUC"]
        :param class_name: class name (subset of classes names), Example: [1, 2, 3]
        :param matrix_save: save matrix flag
        :param normalize: save normalize matrix flag
        :param summary: summary mode flag
        :param header: add headers to csv file
        """
        try:
            class_list = class_param
            if summary:
                class_list = SUMMARY_CLASS
            message = None
            classes = class_filter(self.classes, class_name)
            csv_file = open(name + ".csv", "w", encoding="utf-8")
            csv_data = csv_print(
                classes,
                self.class_stat,
                self.digit,
                class_list)
            csv_file.write(csv_data)
            if matrix_save:
                matrix = self.table
                if normalize:
                    matrix = self.normalized_table
                csv_matrix_file = open(
                    name + "_matrix" + ".csv", "w", encoding="utf-8")
                csv_matrix_data = csv_matrix_print(
                    self.classes, matrix, header=header)
                csv_matrix_file.write(csv_matrix_data)
            if address:
                message = os.path.join(
                    os.getcwd(), name + ".csv")  # pragma: no cover
            return {"Status": True, "Message": message}
        except Exception as e:
            return {"Status": False, "Message": str(e)}

    def save_obj(
            self,
            name: str,
            address: bool = True,
            save_stat: bool = False,
            save_vector: bool = True) -> Dict[str, Union[bool, str]]:
        """
        Save ConfusionMatrix object in .obj file and return the result as a dictionary.

        :param name: filename
        :param address: flag for address return
        :param save_stat: save statistics flag
        :param save_vector: save vectors flag
        """
        try:
            message = None
            obj_file = open(name + ".obj", "w")
            actual_vector_temp = self.actual_vector
            predict_vector_temp = self.predict_vector
            prob_vector_temp = self.prob_vector
            weights_vector_temp = self.weights
            matrix_temp = {k: self.table[k].copy() for k in self.classes}
            matrix_items = []
            for i in self.classes:
                matrix_items.append((i, list(matrix_temp[i].items())))
            actual_vector_temp, predict_vector_temp, prob_vector_temp, weights_vector_temp = map(
                vector_serializer, [
                    actual_vector_temp, predict_vector_temp, prob_vector_temp, weights_vector_temp])
            dump_dict = {"Actual-Vector": actual_vector_temp,
                         "Predict-Vector": predict_vector_temp,
                         "Prob-Vector": prob_vector_temp,
                         "Matrix": matrix_items,
                         "Digit": self.digit,
                         "Sample-Weight": weights_vector_temp,
                         "Transpose": self.transpose,
                         "Imbalanced": self.imbalance}
            if save_stat:
                dump_dict["Class-Stat"] = self.class_stat
                dump_dict["Overall-Stat"] = self.overall_stat
            if not save_vector:
                dump_dict["Actual-Vector"] = None
                dump_dict["Predict-Vector"] = None
                dump_dict["Prob-Vector"] = None
                dump_dict["Sample-Weight"] = None
            json.dump(dump_dict, obj_file)
            if address:
                message = os.path.join(
                    os.getcwd(), name + ".obj")  # pragma: no cover
            return {"Status": True, "Message": message}
        except Exception as e:
            return {"Status": False, "Message": str(e)}

    def F_beta(self, beta: float) -> Dict[str, float]:
        """
        Calculate FBeta score for all classes.

        :param beta: beta parameter
        """
        try:
            F_dict = {}
            for i in self.TP:
                F_dict[i] = F_calc(
                    TP=self.TP[i],
                    FP=self.FP[i],
                    FN=self.FN[i],
                    beta=beta)
            return F_dict
        except Exception:
            return {}

    @metrics_off_check
    def sensitivity_index(self) -> Dict[str, float]:
        """Calculate sensitivity index for all classes."""
        sensitivity_index_dict = {}
        for i in self.classes:
            sensitivity_index_dict[i] = sensitivity_index_calc(
                self.TPR[i], self.FPR[i])
        return sensitivity_index_dict

    @metrics_off_check
    def IBA_alpha(self, alpha: float) -> Dict[str, float]:
        """
        Calculate IBA_alpha score for all classes.

        :param alpha: alpha parameter
        """
        try:
            IBA_dict = {}
            for i in self.classes:
                IBA_dict[i] = IBA_calc(self.TPR[i], self.TNR[i], alpha=alpha)
            return IBA_dict
        except Exception:
            return {}

    def TI(self, alpha: float, beta: float) -> Dict[str, float]:
        """
        Calculate Tversky index.

        :param alpha: alpha coefficient
        :param beta: beta coefficient
        """
        try:
            TI_dict = {}
            for i in self.classes:
                TI_dict[i] = TI_calc(
                    self.TP[i], self.FP[i], self.FN[i], alpha, beta)
            return TI_dict
        except Exception:
            return {}

    @metrics_off_check
    def NB(self, w: float = 1.0) -> Dict[str, float]:
        """
        Calculate Net benefit for all classes.

        :param w: weight
        """
        try:
            NB_dict = {}
            for i in self.classes:
                NB_dict[i] = NB_calc(self.TP[i], self.FP[i], self.POP[i], w)
            return NB_dict
        except Exception:
            return {}

    def distance(self, metric: DistanceType) -> Dict[str, float]:
        """
        Calculate distance/similarity for all classes.

        :param metric: metric
        """
        distance_dict = {}
        if not isinstance(metric, DistanceType):
            raise pycmMatrixError(DISTANCE_METRIC_TYPE_ERROR)
        for i in self.classes:
            distance_dict[i] = DISTANCE_MAPPER[metric](
                TP=self.TP[i], FP=self.FP[i], FN=self.FN[i], TN=self.TN[i])
        return distance_dict

    def dissimilarity_matrix(self) -> Dict[str, Dict[str, int]]:
        """Calculate dissimilarity matrix."""
        result = {class_name: dict(zip(self.classes, [0] * len(self.classes))) for class_name in self.classes}
        matrix_array = self.to_array()
        for class_index_1, class_name_1 in enumerate(self.classes):
            for class_index_2, class_name_2 in enumerate(self.classes):
                dist = int(sum(abs(matrix_array[class_index_1] - matrix_array[class_index_2])))
                result[class_name_1][class_name_2] = dist
        return result

    @metrics_off_check
    def CI(
            self,
            param: str,
            alpha: float = 0.05,
            one_sided: bool = False,
            binom_method: str = "normal-approx") -> Dict[str, Tuple[float, float]]:
        """
        Calculate CI.

        :param param: input parameter
        :param alpha: type I error
        :param one_sided: one-sided mode flag
        :param binom_method: binomial confidence intervals method
        """
        if isinstance(param, str):
            method = "normal-approx"
            if isinstance(binom_method, str):
                method = binom_method.lower()
            if one_sided:
                if alpha in ALPHA_ONE_SIDE_TABLE:
                    CV = ALPHA_ONE_SIDE_TABLE[alpha]
                else:
                    CV = ALPHA_ONE_SIDE_TABLE[0.05]
                    warn(CI_ALPHA_ONE_SIDE_WARNING, RuntimeWarning)
            else:
                if alpha in ALPHA_TWO_SIDE_TABLE:
                    CV = ALPHA_TWO_SIDE_TABLE[alpha]
                else:
                    CV = ALPHA_TWO_SIDE_TABLE[0.05]
                    warn(CI_ALPHA_TWO_SIDE_WARNING, RuntimeWarning)
            param_u = param.upper()
            if param_u in CI_CLASS_LIST:
                return __CI_class_handler__(self, param_u, CV, method)
            if param in CI_OVERALL_LIST:
                return __CI_overall_handler__(self, param, CV, method)
            raise pycmCIError(CI_SUPPORT_ERROR)
        raise pycmCIError(CI_FORMAT_ERROR)

    def __repr__(self) -> str:
        """Confusion matrix object representation method."""
        return "pycm.ConfusionMatrix(classes: " + str(self.classes) + ")"

    def __len__(self) -> int:
        """Confusion matrix object length method."""
        return len(self.classes)

    def __eq__(self, other: Any) -> bool:
        """
        Confusion matrix equal method.

        :param other: the other confusion matrix
        """
        if isinstance(other, ConfusionMatrix):
            return self.table == other.table
        return False

    def __ne__(self, other: Any) -> bool:
        """
        Confusion matrix not equal method.

        :param other: the other confusion matrix
        """
        return not self.__eq__(other)

    def __copy__(self) -> "ConfusionMatrix":
        """Create a copy of the confusion matrix."""
        _class = self.__class__
        result = _class.__new__(_class)
        result.__dict__.update(self.__dict__)
        return result

    def copy(self) -> "ConfusionMatrix":
        """Create a copy of the confusion matrix."""
        return self.__copy__()

    def relabel(self, mapping: Dict[Any, Any], sort: bool = False) -> None:
        """
        Rename the confusion matrix classes.

        :param mapping: mapping dictionary
        :param sort: flag for sorting new classes
        """
        if not isinstance(mapping, dict):
            raise pycmMatrixError(MAPPING_FORMAT_ERROR)
        if set(self.classes) != set(mapping):
            raise pycmMatrixError(MAPPING_CLASS_NAME_ERROR)
        if len(self.classes) != len(set(mapping.values())):
            raise pycmMatrixError(MAPPING_CLASS_NAME_ERROR)
        table_temp = {}
        normalized_table_temp = {}
        for row in self.classes:
            temp_dict = {}
            temp_dict_normalized = {}
            for col in self.classes:
                temp_dict[mapping[col]] = self.table[row][col]
                temp_dict_normalized[mapping[col]
                                     ] = self.normalized_table[row][col]
            table_temp[mapping[row]] = temp_dict
            normalized_table_temp[mapping[row]] = temp_dict_normalized
        self.table = table_temp
        self.normalized_table = normalized_table_temp
        self.matrix = self.table
        self.normalized_matrix = self.normalized_table
        for param in self.class_stat:
            temp_dict = {}
            for classname in self.classes:
                temp_dict[mapping[classname]
                          ] = self.class_stat[param][classname]
            self.class_stat[param] = temp_dict
        temp_label_map = {}
        for prime_label, new_label in self.label_map.items():
            temp_label_map[prime_label] = mapping[new_label]
        self.label_map = temp_label_map
        self.positions = None
        self.classes = [mapping[x] for x in self.classes]
        if sort:
            self.classes = sorted(self.classes)
        self.TP = self.class_stat["TP"]
        self.TN = self.class_stat["TN"]
        self.FP = self.class_stat["FP"]
        self.FN = self.class_stat["FN"]
        __class_stat_init__(self)

    @metrics_off_check
    def average(self, param: str, none_omit: bool = False) -> Union[float, str]:
        """
        Calculate the average of the input parameter.

        :param param: input parameter
        :param none_omit: none items omitting flag
        """
        return self.weighted_average(
            param=param,
            weight=self.POP,
            none_omit=none_omit)

    @metrics_off_check
    def weighted_average(self, param: str, weight: Optional[Dict[Any, float]]
                         = None, none_omit: bool = False) -> Union[float, str]:
        """
        Calculate the weighted average of the input parameter.

        :param param: input parameter
        :param weight: explicitly passes weights
        :param none_omit: none items omitting flag
        """
        selected_weight = self.P.copy()
        if weight is not None:
            if not isinstance(weight, dict):
                raise pycmAverageError(AVERAGE_WEIGHT_ERROR)
            if set(weight) == set(self.classes) and all(
                    [isfloat(x) for x in weight.values()]):
                selected_weight = weight.copy()
            else:
                raise pycmAverageError(AVERAGE_WEIGHT_ERROR)
        if param in self.class_stat:
            selected_param = self.class_stat[param]
        else:
            raise pycmAverageError(AVERAGE_INVALID_ERROR)
        try:
            weight_list = []
            param_list = []
            for class_name in selected_param:
                if selected_param[class_name] == "None" and none_omit:
                    continue
                weight_list.append(selected_weight[class_name])
                param_list.append(selected_param[class_name])
            return numpy.average(param_list, weights=weight_list)
        except Exception:
            return "None"

    @metrics_off_check
    def weighted_kappa(self, weight: Optional[Dict[Any, Dict[Any, float]]] = None) -> float:
        """
        Calculate weighted kappa.

        :param weight: weight matrix
        """
        if matrix_check(weight) is False:
            warn(WEIGHTED_KAPPA_WARNING, RuntimeWarning)
            return self.Kappa
        if set(weight) != set(self.classes):
            warn(WEIGHTED_KAPPA_WARNING, RuntimeWarning)
            return self.Kappa
        return weighted_kappa_calc(
            self.classes,
            self.table,
            self.P,
            self.TOP,
            self.POP,
            weight)

    @metrics_off_check
    def weighted_alpha(self, weight: Optional[Dict[Any, Dict[Any, float]]] = None) -> float:
        """
        Calculate weighted Krippendorff's alpha.

        :param weight: weight matrix
        """
        if matrix_check(weight) is False:
            warn(WEIGHTED_ALPHA_WARNING, RuntimeWarning)
            return self.Alpha
        if set(weight) != set(self.classes):
            warn(WEIGHTED_ALPHA_WARNING, RuntimeWarning)
            return self.Alpha
        return weighted_alpha_calc(
            self.classes,
            self.table,
            self.P,
            self.TOP,
            self.POP,
            weight)

    @metrics_off_check
    def aickin_alpha(self, max_iter: int = 200, epsilon: float = 0.0001) -> float:
        """
        Calculate Aickin's alpha.

        :param max_iter: maximum number of iterations
        :param epsilon: difference threshold
        """
        return alpha2_calc(
            self.TOP,
            self.P,
            self.Overall_ACC,
            self.POP,
            self.classes,
            max_iter,
            epsilon)

    def brier_score(self, pos_class: Optional[Any] = None) -> float:
        """
        Calculate Brier score.

        :param pos_class: positive class name
        """
        if self.prob_vector is None or not self.binary:
            raise pycmVectorError(BRIER_LOG_LOSS_PROB_ERROR)
        if pos_class is None and isinstance(self.classes[0], str):
            raise pycmVectorError(BRIER_LOG_LOSS_CLASS_ERROR)
        return brier_score_calc(
            self.classes,
            self.prob_vector,
            self.actual_vector,
            self.weights,
            pos_class)

    def log_loss(self, normalize: bool = True, pos_class: Optional[Any] = None) -> float:
        """
        Calculate Log loss.

        :param normalize: normalization flag
        :param pos_class: positive class name
        """
        if self.prob_vector is None or not self.binary:
            raise pycmVectorError(BRIER_LOG_LOSS_PROB_ERROR)
        if pos_class is None and isinstance(self.classes[0], str):
            raise pycmVectorError(BRIER_LOG_LOSS_CLASS_ERROR)
        return log_loss_calc(
            self.classes,
            self.prob_vector,
            self.actual_vector,
            normalize,
            self.weights,
            pos_class)

    def position(self) -> Dict[Any, Dict[str, List[int]]]:
        """Return indices of TP, FP, TN and FN in the predict_vector."""
        if self.predict_vector is None or self.actual_vector is None:
            raise pycmVectorError(VECTOR_ONLY_ERROR)
        if self.positions is None:
            classes = list(self.label_map)
            positions = {
                self.label_map[_class]: {
                    'TP': [],
                    'FP': [],
                    'TN': [],
                    'FN': []} for _class in classes}
            [actual_vector, predict_vector] = vector_filter(
                self.actual_vector, self.predict_vector)
            for index, observation in enumerate(predict_vector):
                for _class in classes:
                    label = self.label_map[_class]
                    if observation == actual_vector[index]:
                        if _class == observation:
                            positions[label]['TP'].append(index)
                        else:
                            positions[label]['TN'].append(index)
                    else:
                        if _class == observation:
                            positions[label]['FP'].append(index)
                        elif _class == actual_vector[index]:
                            positions[label]['FN'].append(index)
                        else:
                            positions[label]['TN'].append(index)
            self.positions = positions
        return self.positions

    def to_array(self, normalized: bool = False, one_vs_all: bool = False,
                 class_name: Optional[Any] = None) -> numpy.ndarray:
        """
        Return the confusion matrix in form of a numpy array.

        :param normalized: a flag for getting normalized confusion matrix
        :param one_vs_all: one-vs-all mode flag
        :param class_name: target class name for one-vs-all mode
        """
        classes = self.classes
        table = self.table
        if normalized:
            table = self.normalized_table
        if one_vs_all:
            [classes, table] = one_vs_all_func(
                classes, table, self.TP, self.TN, self.FP, self.FN, class_name)
            if normalized:
                table = normalized_table_calc(classes, table)
        array = []
        for key in classes:
            row = [table[key][i] for i in classes]
            array.append(row)
        return numpy.array(array)

    def combine(self, other: "ConfusionMatrix", metrics_off: bool = False) -> "ConfusionMatrix":
        """
        Return the combination of two confusion matrices.

        :param other: the other matrix that is going to be combined
        :param metrics_off: metrics off flag
        """
        if isinstance(other, ConfusionMatrix) is False:
            raise pycmMatrixError(COMBINE_TYPE_ERROR)
        return ConfusionMatrix(
            matrix=matrix_combine(
                self.matrix, other.matrix), metrics_off=metrics_off)

    def plot(
            self,
            normalized: bool = False,
            one_vs_all: bool = False,
            class_name: Optional[Any] = None,
            title: str = 'Confusion Matrix',
            number_label: bool = False,
            cmap: Optional["matplotlib.colors.Color.ListedColormap"] = None,
            plot_lib: str = 'matplotlib') -> "matplotlib.pyplot.Axes":
        """
        Plot confusion matrix and return the plot axes.

        :param normalized: normalized flag for matrix
        :param one_vs_all: one-vs-all mode flag
        :param class_name: target class name for one-vs-all mode
        :param title: plot title
        :param number_label: number label flag
        :param cmap: color map
        :param plot_lib: plotting library
        """
        matrix = self.to_array(
            normalized=normalized,
            one_vs_all=one_vs_all,
            class_name=class_name)
        classes = self.classes
        if normalized:
            title += " (Normalized)"
        if one_vs_all and class_name in classes:
            classes = [class_name, '~']
        try:
            from matplotlib import pyplot as plt
        except (ModuleNotFoundError, ImportError):
            raise pycmPlotError(MATPLOTLIB_PLOT_LIBRARY_ERROR)
        if cmap is None:
            cmap = plt.cm.gray_r
        fig, ax = plt.subplots()
        fig.canvas.manager.set_window_title(title)
        if plot_lib == 'seaborn':
            try:
                import seaborn as sns
            except (ModuleNotFoundError, ImportError):
                raise pycmPlotError(SEABORN_PLOT_LIBRARY_ERROR)
            ax = sns.heatmap(matrix, cmap=cmap)
            return axes_gen(
                ax,
                classes,
                matrix,
                title,
                cmap,
                number_label,
                plot_lib)
        plt.imshow(matrix, cmap=cmap)
        plt.colorbar()
        return axes_gen(
            ax,
            classes,
            matrix,
            title,
            cmap,
            number_label,
            plot_lib)