1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
# -*- coding: utf-8 -*-
"""ConfusionMatrix handlers."""
from __future__ import division
from typing import Dict, IO
from .class_funcs import class_statistics
from .errors import pycmVectorError, pycmMatrixError
from .overall_funcs import overall_statistics
from .utils import *
from .params import *
import json
import types
import numpy
def __class_stat_init__(cm: "pycm.ConfusionMatrix") -> None:
"""
Init individual class stats.
:param cm: confusion matrix
"""
for stat, field_name in CLASS_PARAMS.items():
setattr(cm, field_name, cm.class_stat[stat])
def __overall_stat_init__(cm: "pycm.ConfusionMatrix") -> None:
"""
Init individual overall stats.
:param cm: confusion matrix
"""
for stat, field_name in OVERALL_PARAMS.items():
setattr(cm, field_name, cm.overall_stat[stat])
def __imbalancement_handler__(cm: "pycm.ConfusionMatrix", is_imbalanced: bool) -> None:
"""
Check if the confusion matrix is imbalanced.
:param cm: confusion matrix
:param is_imbalanced: is imbalanced flag passed to __init__
"""
if cm.imbalance is None:
if is_imbalanced is None:
is_imbalanced = imbalance_check(cm.P)
cm.imbalance = is_imbalanced
def __obj_assign_handler__(
cm: "pycm.ConfusionMatrix",
matrix_param: Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]) -> None:
"""
Assign basic parameters to the input confusion matrix.
:param cm: confusion matrix
:param matrix_param: matrix parameters
"""
cm.classes = matrix_param[0]
cm.table = matrix_param[1]
cm.matrix = cm.table
cm.normalized_table = normalized_table_calc(cm.classes, cm.table)
cm.normalized_matrix = cm.normalized_table
cm.TP = matrix_param[2]
cm.TN = matrix_param[3]
cm.FP = matrix_param[4]
cm.FN = matrix_param[5]
if not cm.metrics_off:
statistic_result = class_statistics(
TP=matrix_param[2],
TN=matrix_param[3],
FP=matrix_param[4],
FN=matrix_param[5],
classes=matrix_param[0],
table=matrix_param[1])
cm.class_stat = statistic_result
cm.overall_stat = overall_statistics(
RACC=statistic_result["RACC"],
RACCU=statistic_result["RACCU"],
TPR=statistic_result["TPR"],
PPV=statistic_result["PPV"],
NPV=statistic_result["NPV"],
F1=statistic_result["F1"],
TP=statistic_result["TP"],
FN=statistic_result["FN"],
ACC=statistic_result["ACC"],
POP=statistic_result["POP"],
P=statistic_result["P"],
TOP=statistic_result["TOP"],
jaccard_list=statistic_result["J"],
classes=cm.classes,
table=cm.table,
CEN_dict=statistic_result["CEN"],
MCEN_dict=statistic_result["MCEN"],
AUC_dict=statistic_result["AUC"],
ICSI_dict=statistic_result["ICSI"],
TNR=statistic_result["TNR"],
TN=statistic_result["TN"],
FP=statistic_result["FP"])
else:
cm.class_stat = dict(zip(CLASS_PARAMS.keys(), len(
CLASS_PARAMS) * [{i: "None" for i in cm.classes}]))
cm.overall_stat = dict(
zip(OVERALL_PARAMS.keys(), len(OVERALL_PARAMS) * ["None"]))
def __obj_file_handler__(cm: "pycm.ConfusionMatrix", file: IO) -> Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]:
"""
Handle object conditions for the input file.
:param cm: confusion matrix
:param file: saved confusion matrix file object
"""
obj_data = json.load(file)
if obj_data["Actual-Vector"] is not None and obj_data[
"Predict-Vector"] is not None:
loaded_weights = obj_data.get("Sample-Weight", None)
matrix_param = matrix_params_calc(obj_data[
"Actual-Vector"],
obj_data[
"Predict-Vector"], loaded_weights)
cm.actual_vector = obj_data["Actual-Vector"]
cm.predict_vector = obj_data["Predict-Vector"]
cm.prob_vector = obj_data.get("Prob-Vector", None)
cm.weights = loaded_weights
else:
try:
loaded_transpose = obj_data["Transpose"]
except Exception:
loaded_transpose = False
cm.transpose = loaded_transpose
loaded_matrix = dict(obj_data["Matrix"])
for i in loaded_matrix:
loaded_matrix[i] = dict(loaded_matrix[i])
matrix_param = matrix_params_from_table(loaded_matrix)
cm.digit = obj_data["Digit"]
cm.imbalance = obj_data.get("Imbalanced", None)
return matrix_param
def __obj_matrix_handler__(
matrix: Dict[Any, Dict[Any, int]],
classes: List[Any],
transpose: bool) -> Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]:
"""
Handle object conditions for the matrix.
:param matrix: the confusion matrix in dict form
:param classes: ordered labels of classes
:param transpose: transpose flag
"""
if matrix_check(matrix):
if class_check(list(matrix)) is False:
raise pycmMatrixError(MATRIX_CLASS_TYPE_ERROR)
matrix_param = matrix_params_from_table(matrix, classes, transpose)
else:
raise pycmMatrixError(MATRIX_FORMAT_ERROR)
return matrix_param
def __obj_array_handler__(
array: Union[List[List[int]], numpy.ndarray],
classes: List[Any],
transpose: bool) -> Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]:
"""
Handle object conditions for the array.
:param matrix: the confusion matrix in array form
:param classes: ordered labels of classes
:param transpose: transpose flag
"""
if classes is not None and len(set(classes)) != len(classes):
raise pycmMatrixError(VECTOR_UNIQUE_CLASS_ERROR)
if classes is None:
classes = list(range(len(array)))
if len(classes) != len(array):
raise pycmMatrixError(CLASSES_LENGTH_ERROR)
matrix = {}
for i in range(len(array)):
matrix[classes[i]] = {classes[j]: x for j, x in enumerate(array[i])}
return __obj_matrix_handler__(matrix, classes, transpose)
def __obj_vector_handler__(
cm: "pycm.ConfusionMatrix",
actual_vector: Union[List[Any], numpy.ndarray],
predict_vector: Union[List[Any], numpy.ndarray],
threshold: Callable,
sample_weight: Union[List[Any], numpy.ndarray],
classes: List[Any]) -> Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]:
"""
Handle object conditions for vectors.
:param cm: confusion matrix
:param actual_vector: actual vector
:param predict_vector: vector of predictions
:param threshold: activation threshold function
:param sample_weight: sample weights list
:param classes: ordered labels of classes
"""
if isinstance(threshold, types.FunctionType):
cm.prob_vector = predict_vector
predict_vector = list(map(threshold, predict_vector))
cm.predict_vector = predict_vector
if not isinstance(actual_vector, (list, numpy.ndarray)) or not \
isinstance(predict_vector, (list, numpy.ndarray)):
raise pycmVectorError(VECTOR_TYPE_ERROR)
if len(actual_vector) != len(predict_vector):
raise pycmVectorError(VECTOR_SIZE_ERROR)
if len(actual_vector) == 0 or len(predict_vector) == 0:
raise pycmVectorError(VECTOR_EMPTY_ERROR)
if classes is not None and len(set(classes)) != len(classes):
raise pycmVectorError(VECTOR_UNIQUE_CLASS_ERROR)
matrix_param = matrix_params_calc(
actual_vector, predict_vector, sample_weight, classes)
if isinstance(sample_weight, (list, numpy.ndarray)):
cm.weights = sample_weight
return matrix_param
|