1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
# -*- coding: utf-8 -*-
"""Utility module."""
from __future__ import division
from typing import Union, List, Dict, Any, Tuple, Callable, Optional
from io import TextIOWrapper
import sys
import math
import numpy
import re
from .params import *
from .errors import pycmMatrixError
from warnings import warn
from functools import wraps
def list_check_equal(input_list: List[Any]) -> bool:
"""
Check equality of the input list items.
:param input_list: input list
"""
return input_list[1:] == input_list[:-1]
def isfloat(value: str) -> bool:
"""Check if the input string can be converted to a float."""
try:
float(value)
return True
except Exception:
return False
def rounder(input_number: Any, digit: int = 5) -> str:
"""
Round the input number and convert it to str.
:param input_number: input number
:param digit: scale (number of fraction digits)(default value: 5)
"""
if isinstance(input_number, tuple):
tuple_list = list(input_number)
tuple_str = []
for i in tuple_list:
if isfloat(i):
tuple_str.append(str(numpy.around(i, digit)))
else:
tuple_str.append(str(i))
return "(" + ",".join(tuple_str) + ")"
if isfloat(input_number):
return str(numpy.around(input_number, digit))
return str(input_number)
def class_filter(classes: List[Any], class_name: List[Any]) -> List[Any]:
"""
Filter classes by comparing two lists.
:param classes: confusion matrix classes
:param class_name: subset of classes list
"""
result_classes = classes
if isinstance(class_name, list):
if set(class_name) <= set(classes):
result_classes = class_name
return result_classes
def vector_check(vector: List) -> bool:
"""
Check if all items in the input vector are non-negative integers.
:param vector: input vector
"""
for i in vector:
if isinstance(i, (int, numpy.integer)) is False:
return False
if i < 0:
return False
return True
def matrix_check(table: Dict[Any, Dict[Any, int]]) -> bool:
"""
Check input matrix format.
:param table: input confusion matrix
"""
try:
if len(table) == 0:
return False
for i in table:
if set(table) != set(table[i]) or vector_check(
list(table[i].values())) is False:
return False
return True
except Exception:
return False
def vector_filter(actual_vector: Union[List[Any], numpy.ndarray],
predict_vector: Union[List[Any], numpy.ndarray]) -> Tuple[List[Any], List[Any]]:
"""
Convert different type of items in vectors to str.
:param actual_vector: actual values
:param predict_vector: vector of predictions
"""
if isinstance(actual_vector, numpy.ndarray):
actual_vector = actual_vector.tolist()
if isinstance(predict_vector, numpy.ndarray):
predict_vector = predict_vector.tolist()
temp = []
temp.extend(actual_vector)
temp.extend(predict_vector)
types = set(map(type, temp))
if len(types) > 1 or len(set(temp)) == 1:
return list(map(str, actual_vector)), list(map(str, predict_vector))
return actual_vector, predict_vector
def class_check(vector: List[Any]) -> bool:
"""
Check if all items in the vector are of the same type.
:param vector: input vector
"""
for i in vector:
if not isinstance(i, type(vector[0])):
return False
return True
def isfile(f: TextIOWrapper) -> bool:
"""
Check file object in python 2.7 & 3.x.
:param f: input object
"""
return isinstance(
f, file) if sys.version_info[0] == 2 else hasattr(
f, 'read')
def one_vs_all_func(classes: List[Any],
table: Dict[Any, Dict[Any, int]],
TP: Dict[Any, int],
TN: Dict[Any, int],
FP: Dict[Any, int],
FN: Dict[Any, int],
class_name: Any) -> Tuple[List[Any], Dict[Any, Dict[Any, int]]]:
"""
Return one-vs-all confusion matrix as a tuple containing the list of classes and the confusion matrix table.
:param classes: confusion matrix classes
:param table: input confusion matrix
:param TP: true positive
:param TN: true negative
:param FP: false positive
:param FN: false negative
:param class_name: target class name for one-vs-all mode
"""
try:
report_classes = [str(class_name), "~"]
report_table = {str(class_name): {str(class_name): TP[class_name],
"~": FN[class_name]},
"~": {str(class_name): FP[class_name],
"~": TN[class_name]}}
return report_classes, report_table
except Exception:
return classes, table
def normalized_table_calc(classes: List[Any], table: Dict[Any, Dict[Any, int]]) -> Dict[Any, Dict[Any, float]]:
"""
Return normalized confusion matrix.
:param classes: confusion matrix classes
:param table: input confusion matrix
"""
normalized_table = {}
p = float(10**5)
for key in classes:
normalized_table[key] = {}
div = sum(table[key].values())
if div == 0:
div = 1
for item in classes:
normalized_table[key][item] = custom_rounder(
table[key][item] / div, p)
return normalized_table
def custom_rounder(input_number: float, p: int) -> float:
"""
Return round of the input number respected to the digit.
:param input_number: number that should be round
:param p: 10 powered by number of digits that wanted to be rounded to
"""
return int(input_number * p + 0.5) / p
def sparse_matrix_calc(classes: List[Any], table: Dict[Any, Dict[Any, int]]
) -> Tuple[Dict[Any, Dict[Any, int]], List[Any], List[Any]]:
"""
Return sparse confusion matrix and its classes.
:param classes: confusion matrix classes
:param table: input confusion matrix
"""
sparse_table = {}
for key in table:
sparse_table[key] = table[key].copy()
predict_classes = classes.copy()
actual_classes = classes.copy()
for x in classes:
row_sum = 0
col_sum = 0
for y in classes:
row_sum += table[x][y]
col_sum += table[y][x]
if row_sum == 0:
del sparse_table[x]
actual_classes.remove(x)
if col_sum == 0:
for row in actual_classes:
del sparse_table[row][x]
predict_classes.remove(x)
return sparse_table, actual_classes, predict_classes
def transpose_func(classes: List[Any], table: Dict[Any, Dict[Any, int]]) -> Dict[Any, Dict[Any, int]]:
"""
Return the transposed confusion matrix.
:param classes: confusion matrix classes
:param table: input confusion matrix
"""
transposed_table = {k: table[k].copy() for k in classes}
for i, item1 in enumerate(classes):
for j, item2 in enumerate(classes):
if i > j:
temp = transposed_table[item1][item2]
transposed_table[item1][item2] = transposed_table[item2][item1]
transposed_table[item2][item1] = temp
return transposed_table
def matrix_params_from_table(table: Dict[Any,
Dict[Any,
int]],
classes: Optional[List[Any]] = None,
transpose: bool = False) -> Tuple[List[Any],
Dict[Any, Dict[Any, int]],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int],
Dict[Any, int]]:
"""
Calculate TP, TN, FP, and FN from the input confusion matrix and return them.
:param table: input confusion matrix
:param classes: ordered labels of classes
:param transpose: transpose flag
"""
if classes is None:
classes = sorted(table)
classes_set = set(classes)
if len(classes_set) < 2:
raise pycmMatrixError(CLASS_NUMBER_ERROR)
if classes_set > set(table):
raise pycmMatrixError(CLASSES_ERROR)
table_temp = table
map_dict = {k: 0 for k in classes}
TP_dict = map_dict.copy()
TN_dict = map_dict.copy()
FP_dict = map_dict.copy()
FN_dict = map_dict.copy()
for i in classes:
TP_dict[i] = table[i][i]
sum_row = sum(list(table[i].values()))
for j in classes:
if j != i:
FN_dict[i] += table[i][j]
FP_dict[j] += table[i][j]
TN_dict[j] += sum_row - table[i][j]
if transpose:
temp = FN_dict
FN_dict = FP_dict
FP_dict = temp
table_temp = transpose_func(classes, table)
return classes, table_temp, TP_dict, TN_dict, FP_dict, FN_dict
def matrix_params_calc(
actual_vector: List[Any],
predict_vector: List[Any],
sample_weight: Optional[Union[List[float], numpy.ndarray]] = None,
classes: Optional[List[Any]] = None) -> Tuple[List[Any], Dict[Any, Dict[Any, int]], Dict[Any, int], Dict[Any, int], Dict[Any, int], Dict[Any, int]]:
"""
Calculate true positive (TP), true negative (TN), false positive (FP), and false negative (FN) for each class and return them.
:param actual_vector: actual values
:param predict_vector: vector of predictions
:param sample_weight: sample weights list
:param classes: ordered labels of classes
"""
[actual_vector, predict_vector] = vector_filter(
actual_vector, predict_vector)
if isinstance(sample_weight, numpy.ndarray):
sample_weight = sample_weight.tolist()
[actual_vector, predict_vector, classes_list] = classes_filter(
actual_vector, predict_vector, classes)
map_dict = {k: 0 for k in classes_list}
table = {k: map_dict.copy() for k in classes_list}
weight_vector = [1] * len(actual_vector)
if isinstance(sample_weight, (list, numpy.ndarray)):
if len(sample_weight) == len(actual_vector):
weight_vector = sample_weight
for index, item in enumerate(actual_vector):
try:
table[item][predict_vector[index]] += 1 * weight_vector[index]
except KeyError:
continue
_, _, TP_dict, TN_dict, FP_dict, FN_dict = matrix_params_from_table(table, classes_list)
return classes_list, table, TP_dict, TN_dict, FP_dict, FN_dict
def classes_filter(actual_vector: List[Any], predict_vector: List[Any],
classes: Optional[List[Any]] = None) -> Tuple[List[Any], List[Any], List[Any]]:
"""
Return updated vectors and classes list.
:param actual_vector: actual values
:param predict_vector: vector of predictions
:param classes: ordered labels of classes
"""
classes_list = set(actual_vector).union(set(predict_vector))
if len(classes_list) == 1:
classes_list.add("~other~")
classes_list = sorted(classes_list)
if isinstance(classes, list):
if len(classes) == 0:
return actual_vector, predict_vector, classes
classes, _ = vector_filter(classes, [])
classes_from_vectors = classes_list
if isinstance(
actual_vector[0],
str) and not isinstance(
classes[0],
str):
classes = list(map(str, classes))
elif isinstance(classes[0], str) and not isinstance(actual_vector[0], str):
actual_vector = list(map(str, actual_vector))
predict_vector = list(map(str, predict_vector))
classes_from_vectors = set(
actual_vector).union(set(predict_vector))
if not set(classes).issubset(classes_from_vectors):
warn(CLASSES_WARNING, RuntimeWarning)
classes_list = classes
elif classes is not None:
warn(CLASSES_TYPE_WARNING, RuntimeWarning)
return actual_vector, predict_vector, classes_list
def imbalance_check(P: Dict[Any, int]) -> bool:
"""
Check if the dataset is imbalanced.
:param P: number of actual positives per class
"""
p_list = list(P.values())
max_value = max(p_list)
min_value = min(p_list)
if min_value > 0:
balance_ratio = max_value / min_value
else:
balance_ratio = max_value
is_imbalanced = False
if balance_ratio > BALANCE_RATIO_THRESHOLD:
is_imbalanced = True
return is_imbalanced
def binary_check(classes: List[Any]) -> bool:
"""
Check if the problem is a binary classification.
:param classes: confusion matrix classes
"""
num_classes = len(classes)
is_binary = False
if num_classes == 2:
is_binary = True
return is_binary
def complement(input_number: float) -> Union[float, str]:
"""
Return the complement of the input number.
:param input_number: input number
"""
try:
return 1 - input_number
except Exception:
return "None"
def statistic_recommend(classes: List[Any], imbalance: bool) -> List:
"""
Return recommend parameters which are more suitable due to the input dataset characteristics.
:param classes: confusion matrix classes
:param imbalance: imbalance flag (True: imbalance, False: balance)
"""
if imbalance:
return IMBALANCED_RECOMMEND
if binary_check(classes):
return BINARY_RECOMMEND
return MULTICLASS_RECOMMEND
def matrix_combine(matrix_1: Dict[Any, Dict[Any, int]],
matrix_2: Dict[Any, Dict[Any, int]]) -> Dict[Any, Dict[Any, int]]:
"""
Return the combination of two confusion matrices.
:param matrix_1: first matrix that is going to be combined.
:param matrix_2: second matrix that is going to be combined.
"""
result_matrix = {}
classes_1, classes_2 = matrix_1.keys(), matrix_2.keys()
classes = set(classes_1).union(set(classes_2))
for class_1 in classes:
temp_dict = {}
for class_2 in classes:
tmp = 0
if class_1 in classes_1 and class_2 in classes_1:
tmp += matrix_1[class_1][class_2]
if class_1 in classes_2 and class_2 in classes_2:
tmp += matrix_2[class_1][class_2]
temp_dict[class_2] = tmp
result_matrix[class_1] = temp_dict
return result_matrix
def add_number_label(
ax: "matplotlib.pyplot.Axes",
classes: List[str],
matrix: numpy.ndarray,
cmap: "matplotlib.colors.Color.ListedColormap",
plot_lib: str) -> None:
"""
Add number labels to confusion matrix plot.
:param ax: confusion matrix axes
:param classes: confusion matrix classes
:param matrix: the confusion matrix in array form
:param cmap: color map
:param plot_lib: plotting library
"""
diff_matrix = float(matrix.max()) - matrix
diff_matrix_max = float(diff_matrix.max())
for i in range(len(classes)):
for j in range(len(classes)):
color_index = float(round(diff_matrix[i][j] / diff_matrix_max))
color = cmap(color_index)
x = j
y = i
if plot_lib == 'seaborn':
x += 0.5
y += 0.5
ax.text(x,
y,
str(matrix[i][j]),
horizontalalignment='center',
verticalalignment='center',
color=color)
def axes_gen(
ax: "matplotlib.pyplot.Axes",
classes: List[str],
matrix: numpy.ndarray,
title: str,
cmap: "matplotlib.colors.Color.ListedColormap",
number_label: bool,
plot_lib: str) -> "matplotlib.pyplot.Axes":
"""
Add extra descriptions to axes and return the modified axes.
:param ax: confusion matrix axes
:param classes: confusion matrix classes
:param matrix: the confusion matrix in array form
:param title: plot title
:param cmap: color map
:param number_label: number label flag
:param plot_lib: plotting library
"""
ax.set_title(title)
positions = list(range(len(classes)))
if plot_lib == 'seaborn':
positions = list(map(lambda x: x + 0.5, positions))
ax.set_xticks(positions)
ax.set_xticklabels(classes)
ax.set_xlabel("Predicted Classes")
ax.set_yticks(positions)
ax.set_yticklabels(classes)
ax.set_ylabel("Actual Classes")
if number_label:
add_number_label(
ax,
classes,
matrix,
cmap,
plot_lib)
return ax
def polevl(x: float, coefs: List[float], n: int) -> float:
"""
Evaluate polynomial of degree n.
:param x: polynomial variable
:param coefs: polynomial coefficients
:param n: degree
"""
ans = 0
power = len(coefs) - 1
for coef in coefs:
ans += coef * x**power
power -= 1
return ans
def p1evl(x: float, coefs: List[float], n: int) -> float:
"""
Evaluate polynomial when coefficient of x^n is 1.
:param x: polynomial variable
:param coefs: polynomial coefficients
:param n: degree
"""
return polevl(x, [1] + coefs, n)
def ndtri(y: float) -> float:
"""
Return the argument x for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to y.
:param y: function input
"""
s2pi = 2.50662827463100050242
code = 1
if y > (1.0 - 0.13533528323661269189):
y = 1.0 - y
code = 0
if y > 0.13533528323661269189:
y = y - 0.5
y2 = y * y
x = y + y * (y2 * polevl(y2, NDTRI_P0, 4) / p1evl(y2, NDTRI_Q0, 8))
x = x * s2pi
return x
x = math.sqrt(-2.0 * math.log(y))
x0 = x - math.log(x) / x
z = 1.0 / x
if x < 8.0:
x1 = z * polevl(z, NDTRI_P1, 8) / p1evl(z, NDTRI_Q1, 8)
else:
x1 = z * polevl(z, NDTRI_P2, 8) / p1evl(z, NDTRI_Q2, 8)
x = x0 - x1
if code != 0:
x = -x
return x
def inv_erf(z: float) -> Union[float, str]:
"""
Inverse error function.
:param z: function input
"""
if z <= -1 or z >= 1:
return "None"
if z == 0:
return 0
result = ndtri((z + 1) / 2.0) / math.sqrt(2)
return result
def normal_quantile(p: float, mean: float = 0, std: float = 1) -> float:
"""
Calculate normal distribution quantile.
:param p: probability
:param mean: mean
:param std: standard deviation
"""
try:
return mean + std * math.sqrt(2) * inv_erf((2 * p) - 1)
except Exception:
return "None"
def threshold_func(item: List[float], class_index: int, classes: List[str], threshold: float) -> str:
"""
Select class name based on the threshold value.
:param item: list of probabilities for each class
:param class_index: index of the class to check
:param classes: ordered list of class labels
:param threshold: threshold for class selection
"""
class_name = classes[class_index]
if item[class_index] >= threshold:
return class_name
_classes = classes[:]
_classes.remove(class_name)
return _classes[0]
def thresholds_calc(probs: Union[List[float], numpy.ndarray]) -> List[float]:
"""
Return the thresholds from the probability vector.
:param probs: probabilities
"""
thresholds = numpy.ravel(probs)
thresholds = sorted(set(thresholds.tolist()))
return thresholds
def char_num_transformer(input_item: str) -> List[Tuple[str, Union[int, bool], Union[str, bool]]]:
"""
Transform the input string to a proper key for char-num sorting.
:param input_item: input item
"""
return [(input_item, False, False) if not re.findall(r'\d+', input_item)
else (input_item[:re.search(r'\d+', input_item).start()],
int(re.findall(r'\d+', input_item)[0]),
input_item[re.search(r'\d+', input_item).end():])]
def sort_char_num(input_list: List[str]) -> List[str]:
"""
Return a sorted list of strings first alphabetically and then numerically.
:param input_list: input list of strings
"""
return sorted(input_list, key=char_num_transformer)
def vector_serializer(vector: Union[List, numpy.ndarray]) -> List:
"""
Return given vector in a serializable format.
:param vector: the given vector
"""
if isinstance(vector, numpy.ndarray):
vector = vector.tolist()
return vector
def metrics_off_check(func: Callable) -> Callable:
"""
Check metrics_off flag decorator.
:param func: input function
"""
@wraps(func)
def inner_function(*args: List[Any], **kwargs: Dict[str, Any]) -> Any:
"""
Inner function which checks the metrics_off flag.
:param args: non-keyword arguments
:param kwargs: keyword arguments
"""
if args[0].metrics_off:
raise pycmMatrixError(METRICS_OFF_ERROR)
return func(*args, **kwargs)
return inner_function
def deprecated(func: Callable) -> Callable:
"""
Send a warning regarding function's deprecation.
:param func: input function
"""
@wraps(func)
def inner_function(*args: List[Any], **kwargs: Dict[str, Any]) -> Any:
"""
Inner function which emits a deprecation warning.
:param args: non-keyword arguments
:param kwargs: keyword arguments
"""
warn(
DEPRECATION_WARNING.format(
name=func.__name__),
category=DeprecationWarning,
stacklevel=2)
return func(*args, **kwargs)
return inner_function
|