1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
.\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.13)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.ie \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.el \{\
. de IX
..
.\}
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "xpamainloop 3"
.TH xpamainloop 3 "July 23, 2013" "version 2.1.15" "SAORD Documentation"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
\&\fBXPAMainLoop: optional main loop for \s-1XPA\s0\fR
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <xpa.h>
\&
\& void XPAMainLoop();
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
Once \s-1XPA\s0 access points have been defined, a program must enter an
event loop to watch for requests from external programs. This can be
done in a variety of ways, depending on whether the event loop is
processing events other than \s-1XPA\s0 events. In cases where there are no
non-XPA events to be processed, the program can simply call the
\&\fIXPAMainLoop()\fR event loop. This loop is implemented essentially as
follows (error checking is simplified in this example):
.PP
.Vb 8
\& FD_ZERO(&readfds);
\& while( XPAAddSelect(NULL, &readfds) ){
\& if( sgot = select(swidth, &readfds, NULL, NULL, NULL) >0 )
\& XPAProcessSelect(&readfds, 0);
\& else
\& break;
\& FD_ZERO(&readfds);
\& }
.Ve
.PP
The \fIXPAAddSelect()\fR routine sets up the \fIselect()\fR readfds variable so
that \fIselect()\fR will wait for I/O on all the active \s-1XPA\s0 channels. It
returns the number of XPAs that are active; the loop will end when
there are no active XPAs. The standard \fIselect()\fR routine is called to
wait for an external I/O request. Since no timeout struct is passed
in argument 5, the \fIselect()\fR call hangs until there is an external
request. When an external I/O request is made, the \fIXPAProcessSelect()\fR
routine is executed to process the pending requests. In this routine,
the maxreq value determines how many requests will be processed: if
maxreq <=0, then all currently pending requests will be processed.
Otherwise, up to maxreq requests will be processed. (The most usual
values for maxreq is 0 to process all requests.)
.PP
If a program has its own Unix \fIselect()\fR loop, then \s-1XPA\s0 access points can
be added to it by using a variation of the standard XPAMainLoop:
.PP
.Vb 7
\& XPAAddSelect(xpa, &readfds);
\& [app\-specific ...]
\& if( select(width, &readfds, ...) ){
\& XPAProcessSelect(&readfds, maxreq);
\& [app\-specific ...]
\& FD_ZERO(&readfds);
\& }
.Ve
.PP
\&\fIXPAAddSelect()\fR is called before \fIselect()\fR to add the access points.
If the first argument is \s-1NULL\s0, then all active \s-1XPA\s0 access points
are added. Otherwise only the specified access point is added.
After \fIselect()\fR is called, the \fIXPAProcessSelect()\fR routine can be called
to process \s-1XPA\s0 requests. Once again, the maxreq value determines how
many requests will be processed: if maxreq <=0, then all currently
pending requests will be processed. Otherwise, up to maxreq requests
will be processed.
.PP
\&\s-1XPA\s0 access points can be added to
Xt event loops (using \fIXtAppMainLoop()\fR)
and
Tcl/Tk event loops (using vwait and the Tk loop).
When using \s-1XPA\s0 with these event loops, you only need to call:
.PP
int XPAXtAddInput(XtAppContext app, \s-1XPA\s0 xpa)
.PP
or
.PP
.Vb 1
\& int XPATclAddInput(XPA xpa)
.Ve
.PP
respectively before entering the loop.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
See xpa(n) for a list of \s-1XPA\s0 help pages
|