1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
#-------------------------------------------------------------------------------
# elftools: dwarf/callframe.py
#
# DWARF call frame information
#
# Eli Bendersky (eliben@gmail.com)
# This code is in the public domain
#-------------------------------------------------------------------------------
import copy, os
from collections import namedtuple
from ..common.utils import (
struct_parse, dwarf_assert, preserve_stream_pos, iterbytes)
from ..construct import Struct, Switch
from .enums import DW_EH_encoding_flags
from .structs import DWARFStructs
from .constants import *
class CallFrameInfo(object):
""" DWARF CFI (Call Frame Info)
Note that this also supports unwinding information as found in .eh_frame
sections: its format differs slightly from the one in .debug_frame. See
<http://www.airs.com/blog/archives/460>.
stream, size:
A stream holding the .debug_frame section, and the size of the
section in it.
address:
Virtual address for this section. This is used to decode relative
addresses.
base_structs:
The structs to be used as the base for parsing this section.
Eventually, each entry gets its own structs based on the initial
length field it starts with. The address_size, however, is taken
from base_structs. This appears to be a limitation of the DWARFv3
standard, fixed in v4.
A discussion I had on dwarf-discuss confirms this.
So for DWARFv4 we'll take the address size from the CIE header,
but for earlier versions will use the elfclass of the containing
file; more sophisticated methods are used by libdwarf and others,
such as guessing which CU contains which FDEs (based on their
address ranges) and taking the address_size from those CUs.
"""
def __init__(self, stream, size, address, base_structs,
for_eh_frame=False):
self.stream = stream
self.size = size
self.address = address
self.base_structs = base_structs
self.entries = None
# Map between an offset in the stream and the entry object found at this
# offset. Useful for assigning CIE to FDEs according to the CIE_pointer
# header field which contains a stream offset.
self._entry_cache = {}
# The .eh_frame and .debug_frame section use almost the same CFI
# encoding, but there are tiny variations we need to handle during
# parsing.
self.for_eh_frame = for_eh_frame
def get_entries(self):
""" Get a list of entries that constitute this CFI. The list consists
of CIE or FDE objects, in the order of their appearance in the
section.
"""
if self.entries is None:
self.entries = self._parse_entries()
return self.entries
#-------------------------
def _parse_entries(self):
entries = []
offset = 0
while offset < self.size:
entries.append(self._parse_entry_at(offset))
offset = self.stream.tell()
return entries
def _parse_entry_at(self, offset):
""" Parse an entry from self.stream starting with the given offset.
Return the entry object. self.stream will point right after the
entry (even if pulled from the cache).
"""
if offset in self._entry_cache:
entry = self._entry_cache[offset]
self.stream.seek(entry.header.length +
entry.structs.initial_length_field_size(), os.SEEK_CUR)
return entry
entry_length = struct_parse(
self.base_structs.the_Dwarf_uint32, self.stream, offset)
if self.for_eh_frame and entry_length == 0:
return ZERO(offset)
dwarf_format = 64 if entry_length == 0xFFFFFFFF else 32
# Theoretically possible to have a DWARF bitness transition here.
# DWARF version doesn't matter (CIEs are versioned separately), endianness can't change.
# The structs are cached though, so no extraneous creation.
entry_structs = DWARFStructs(
little_endian=self.base_structs.little_endian,
dwarf_format=dwarf_format,
address_size=self.base_structs.address_size)
# Read the next field to see whether this is a CIE or FDE
CIE_id = struct_parse(
entry_structs.the_Dwarf_offset, self.stream)
if self.for_eh_frame:
is_CIE = CIE_id == 0
else:
is_CIE = (
(dwarf_format == 32 and CIE_id == 0xFFFFFFFF) or
CIE_id == 0xFFFFFFFFFFFFFFFF)
# Parse the header, which goes up to and excluding the sequence of
# instructions.
if is_CIE:
header_struct = (entry_structs.EH_CIE_header
if self.for_eh_frame else
entry_structs.Dwarf_CIE_header)
header = struct_parse(
header_struct, self.stream, offset)
else:
header = self._parse_fde_header(entry_structs, offset)
# If the augmentation string is not empty, hope to find a length field
# in order to skip the data specified augmentation.
if is_CIE:
aug_bytes, aug_dict = self._parse_cie_augmentation(
header, entry_structs)
else:
cie = self._parse_cie_for_fde(offset, header, entry_structs)
aug_bytes = self._read_augmentation_data(entry_structs)
lsda_encoding = cie.augmentation_dict.get('LSDA_encoding', DW_EH_encoding_flags['DW_EH_PE_omit'])
if lsda_encoding != DW_EH_encoding_flags['DW_EH_PE_omit']:
# parse LSDA pointer
lsda_pointer = self._parse_lsda_pointer(entry_structs,
self.stream.tell() - len(aug_bytes),
lsda_encoding)
else:
lsda_pointer = None
# For convenience, compute the end offset for this entry
end_offset = (
offset + header.length +
entry_structs.initial_length_field_size())
# At this point self.stream is at the start of the instruction list
# for this entry
instructions = self._parse_instructions(
entry_structs, self.stream.tell(), end_offset)
if is_CIE:
entry = CIE(
header=header, instructions=instructions, offset=offset,
augmentation_dict=aug_dict,
augmentation_bytes=aug_bytes,
structs=entry_structs)
else: # FDE
cie = self._parse_cie_for_fde(offset, header, entry_structs)
entry = FDE(
header=header, instructions=instructions, offset=offset,
structs=entry_structs, cie=cie,
augmentation_bytes=aug_bytes,
lsda_pointer=lsda_pointer,
)
self._entry_cache[offset] = entry
return entry
def _parse_instructions(self, structs, offset, end_offset):
""" Parse a list of CFI instructions from self.stream, starting with
the offset and until (not including) end_offset.
Return a list of CallFrameInstruction objects.
"""
instructions = []
while offset < end_offset:
opcode = struct_parse(structs.the_Dwarf_uint8, self.stream, offset)
args = []
primary = opcode & _PRIMARY_MASK
primary_arg = opcode & _PRIMARY_ARG_MASK
if primary == DW_CFA_advance_loc:
args = [primary_arg]
elif primary == DW_CFA_offset:
args = [
primary_arg,
struct_parse(structs.the_Dwarf_uleb128, self.stream)]
elif primary == DW_CFA_restore:
args = [primary_arg]
# primary == 0 and real opcode is extended
elif opcode in (DW_CFA_nop, DW_CFA_remember_state,
DW_CFA_restore_state, DW_CFA_AARCH64_negate_ra_state):
args = []
elif opcode == DW_CFA_set_loc:
args = [
struct_parse(structs.the_Dwarf_target_addr, self.stream)]
elif opcode == DW_CFA_advance_loc1:
args = [struct_parse(structs.the_Dwarf_uint8, self.stream)]
elif opcode == DW_CFA_advance_loc2:
args = [struct_parse(structs.the_Dwarf_uint16, self.stream)]
elif opcode == DW_CFA_advance_loc4:
args = [struct_parse(structs.the_Dwarf_uint32, self.stream)]
elif opcode in (DW_CFA_offset_extended, DW_CFA_register,
DW_CFA_def_cfa, DW_CFA_val_offset):
args = [
struct_parse(structs.the_Dwarf_uleb128, self.stream),
struct_parse(structs.the_Dwarf_uleb128, self.stream)]
elif opcode in (DW_CFA_restore_extended, DW_CFA_undefined,
DW_CFA_same_value, DW_CFA_def_cfa_register,
DW_CFA_def_cfa_offset):
args = [struct_parse(structs.the_Dwarf_uleb128, self.stream)]
elif opcode == DW_CFA_def_cfa_offset_sf:
args = [struct_parse(structs.the_Dwarf_sleb128, self.stream)]
elif opcode == DW_CFA_def_cfa_expression:
args = [struct_parse(
structs.Dwarf_dw_form['DW_FORM_block'], self.stream)]
elif opcode in (DW_CFA_expression, DW_CFA_val_expression):
args = [
struct_parse(structs.the_Dwarf_uleb128, self.stream),
struct_parse(
structs.Dwarf_dw_form['DW_FORM_block'], self.stream)]
elif opcode in (DW_CFA_offset_extended_sf,
DW_CFA_def_cfa_sf, DW_CFA_val_offset_sf):
args = [
struct_parse(structs.the_Dwarf_uleb128, self.stream),
struct_parse(structs.the_Dwarf_sleb128, self.stream)]
elif opcode == DW_CFA_GNU_args_size:
args = [struct_parse(structs.the_Dwarf_uleb128, self.stream)]
else:
dwarf_assert(False, 'Unknown CFI opcode: 0x%x' % opcode)
instructions.append(CallFrameInstruction(opcode=opcode, args=args))
offset = self.stream.tell()
return instructions
def _parse_cie_for_fde(self, fde_offset, fde_header, entry_structs):
""" Parse the CIE that corresponds to an FDE.
"""
# Determine the offset of the CIE that corresponds to this FDE
if self.for_eh_frame:
# CIE_pointer contains the offset for a reverse displacement from
# the section offset of the CIE_pointer field itself (not from the
# FDE header offset).
cie_displacement = fde_header['CIE_pointer']
cie_offset = (fde_offset + entry_structs.dwarf_format // 8
- cie_displacement)
else:
cie_offset = fde_header['CIE_pointer']
# Then read it
with preserve_stream_pos(self.stream):
return self._parse_entry_at(cie_offset)
def _parse_cie_augmentation(self, header, entry_structs):
""" Parse CIE augmentation data from the annotation string in `header`.
Return a tuple that contains 1) the augmentation data as a string
(without the length field) and 2) the augmentation data as a dict.
"""
augmentation = header.get('augmentation')
if not augmentation:
return ('', {})
# Augmentation parsing works in minimal mode here: we need the length
# field to be able to skip unhandled augmentation fields.
assert augmentation.startswith(b'z'), (
'Unhandled augmentation string: {}'.format(repr(augmentation)))
available_fields = {
b'z': entry_structs.Dwarf_uleb128('length'),
b'L': entry_structs.Dwarf_uint8('LSDA_encoding'),
b'R': entry_structs.Dwarf_uint8('FDE_encoding'),
b'S': True,
b'P': Struct(
'personality',
entry_structs.Dwarf_uint8('encoding'),
Switch('function', lambda ctx: ctx.encoding & 0x0f, {
enc: fld_cons('function')
for enc, fld_cons
in self._eh_encoding_to_field(entry_structs).items()})),
}
# Build the Struct we will be using to parse the augmentation data.
# Stop as soon as we are not able to match the augmentation string.
fields = []
aug_dict = {}
for b in iterbytes(augmentation):
try:
fld = available_fields[b]
except KeyError:
break
if fld is True:
aug_dict[fld] = True
else:
fields.append(fld)
# Read the augmentation twice: once with the Struct, once for the raw
# bytes. Read the raw bytes last so we are sure we leave the stream
# pointing right after the augmentation: the Struct may be incomplete
# (missing trailing fields) due to an unknown char: see the KeyError
# above.
offset = self.stream.tell()
struct = Struct('Augmentation_Data', *fields)
aug_dict.update(struct_parse(struct, self.stream, offset))
self.stream.seek(offset)
aug_bytes = self._read_augmentation_data(entry_structs)
return (aug_bytes, aug_dict)
def _read_augmentation_data(self, entry_structs):
""" Read augmentation data.
This assumes that the augmentation string starts with 'z', i.e. that
augmentation data is prefixed by a length field, which is not returned.
"""
if not self.for_eh_frame:
return b''
augmentation_data_length = struct_parse(
Struct('Dummy_Augmentation_Data',
entry_structs.Dwarf_uleb128('length')),
self.stream)['length']
return self.stream.read(augmentation_data_length)
def _parse_lsda_pointer(self, structs, stream_offset, encoding):
""" Parse bytes to get an LSDA pointer.
The basic encoding (lower four bits of the encoding) describes how the values are encoded in a CIE or an FDE.
The modifier (upper four bits of the encoding) describes how the raw values, after decoded using a basic
encoding, should be modified before using.
Ref: https://www.airs.com/blog/archives/460
"""
assert encoding != DW_EH_encoding_flags['DW_EH_PE_omit']
basic_encoding = encoding & 0x0f
modifier = encoding & 0xf0
formats = self._eh_encoding_to_field(structs)
ptr = struct_parse(
Struct('Augmentation_Data',
formats[basic_encoding]('LSDA_pointer')),
self.stream, stream_pos=stream_offset)['LSDA_pointer']
if modifier == DW_EH_encoding_flags['DW_EH_PE_absptr']:
pass
elif modifier == DW_EH_encoding_flags['DW_EH_PE_pcrel']:
ptr += self.address + stream_offset
else:
assert False, 'Unsupported encoding modifier for LSDA pointer: {:#x}'.format(modifier)
return ptr
def _parse_fde_header(self, entry_structs, offset):
""" Compute a struct to parse the header of the current FDE.
"""
if not self.for_eh_frame:
return struct_parse(entry_structs.Dwarf_FDE_header, self.stream,
offset)
fields = [entry_structs.Dwarf_initial_length('length'),
entry_structs.Dwarf_offset('CIE_pointer')]
# Parse the couple of header fields that are always here so we can
# fetch the corresponding CIE.
minimal_header = struct_parse(Struct('eh_frame_minimal_header',
*fields), self.stream, offset)
cie = self._parse_cie_for_fde(offset, minimal_header, entry_structs)
initial_location_offset = self.stream.tell()
# Try to parse the initial location. We need the initial location in
# order to create a meaningful FDE, so assume it's there. Omission does
# not seem to happen in practice.
encoding = cie.augmentation_dict['FDE_encoding']
assert encoding != DW_EH_encoding_flags['DW_EH_PE_omit']
basic_encoding = encoding & 0x0f
encoding_modifier = encoding & 0xf0
# Depending on the specified encoding, complete the header Struct
formats = self._eh_encoding_to_field(entry_structs)
fields.append(formats[basic_encoding]('initial_location'))
fields.append(formats[basic_encoding]('address_range'))
result = struct_parse(Struct('Dwarf_FDE_header', *fields),
self.stream, offset)
if encoding_modifier == 0:
pass
elif encoding_modifier == DW_EH_encoding_flags['DW_EH_PE_pcrel']:
# Start address is relative to the address of the
# "initial_location" field.
result['initial_location'] += (
self.address + initial_location_offset)
else:
assert False, 'Unsupported encoding: {:#x}'.format(encoding)
return result
@staticmethod
def _eh_encoding_to_field(entry_structs):
"""
Return a mapping from basic encodings (DW_EH_encoding_flags) the
corresponding field constructors (for instance
entry_structs.Dwarf_uint32).
"""
return {
DW_EH_encoding_flags['DW_EH_PE_absptr']:
entry_structs.Dwarf_target_addr,
DW_EH_encoding_flags['DW_EH_PE_uleb128']:
entry_structs.Dwarf_uleb128,
DW_EH_encoding_flags['DW_EH_PE_udata2']:
entry_structs.Dwarf_uint16,
DW_EH_encoding_flags['DW_EH_PE_udata4']:
entry_structs.Dwarf_uint32,
DW_EH_encoding_flags['DW_EH_PE_udata8']:
entry_structs.Dwarf_uint64,
DW_EH_encoding_flags['DW_EH_PE_sleb128']:
entry_structs.Dwarf_sleb128,
DW_EH_encoding_flags['DW_EH_PE_sdata2']:
entry_structs.Dwarf_int16,
DW_EH_encoding_flags['DW_EH_PE_sdata4']:
entry_structs.Dwarf_int32,
DW_EH_encoding_flags['DW_EH_PE_sdata8']:
entry_structs.Dwarf_int64,
}
def instruction_name(opcode):
""" Given an opcode, return the instruction name.
"""
primary = opcode & _PRIMARY_MASK
if primary == 0:
return _OPCODE_NAME_MAP[opcode]
else:
return _OPCODE_NAME_MAP[primary]
class CallFrameInstruction(object):
""" An instruction in the CFI section. opcode is the instruction
opcode, numeric - as it appears in the section. args is a list of
arguments (including arguments embedded in the low bits of some
instructions, when applicable), decoded from the stream.
"""
def __init__(self, opcode, args):
self.opcode = opcode
self.args = args
def __repr__(self):
return '%s (0x%x): %s' % (
instruction_name(self.opcode), self.opcode, self.args)
class CFIEntry(object):
""" A common base class for CFI entries.
Contains a header and a list of instructions (CallFrameInstruction).
offset: the offset of this entry from the beginning of the section
cie: for FDEs, a CIE pointer is required
augmentation_dict: Augmentation data as a parsed struct (dict): see
CallFrameInfo._parse_cie_augmentation and
http://www.airs.com/blog/archives/460.
augmentation_bytes: Augmentation data as a chain of bytes: see
CallFrameInfo._parse_cie_augmentation and
http://www.airs.com/blog/archives/460.
"""
def __init__(self, header, structs, instructions, offset,
augmentation_dict=None, augmentation_bytes=b'', cie=None):
self.header = header
self.structs = structs
self.instructions = instructions
self.offset = offset
self.cie = cie
self._decoded_table = None
self.augmentation_dict = augmentation_dict if augmentation_dict else {}
self.augmentation_bytes = augmentation_bytes
def get_decoded(self):
""" Decode the CFI contained in this entry and return a
DecodedCallFrameTable object representing it. See the documentation
of that class to understand how to interpret the decoded table.
"""
if self._decoded_table is None:
self._decoded_table = self._decode_CFI_table()
return self._decoded_table
def __getitem__(self, name):
""" Implement dict-like access to header entries
"""
return self.header[name]
def _decode_CFI_table(self):
""" Decode the instructions contained in the given CFI entry and return
a DecodedCallFrameTable.
"""
if isinstance(self, CIE):
# For a CIE, initialize cur_line to an "empty" line
cie = self
cur_line = dict(pc=0, cfa=CFARule(reg=None, offset=0))
reg_order = []
else: # FDE
# For a FDE, we need to decode the attached CIE first, because its
# decoded table is needed. Its "initial instructions" describe a
# line that serves as the base (first) line in the FDE's table.
cie = self.cie
cie_decoded_table = cie.get_decoded()
if len(cie_decoded_table.table) > 0:
last_line_in_CIE = copy.copy(cie_decoded_table.table[-1])
cur_line = copy.copy(last_line_in_CIE)
else:
cur_line = dict(cfa=CFARule(reg=None, offset=0))
cur_line['pc'] = self['initial_location']
reg_order = copy.copy(cie_decoded_table.reg_order)
table = []
# Keeps a stack for the use of DW_CFA_{remember|restore}_state
# instructions.
line_stack = []
def _add_to_order(regnum):
# DW_CFA_restore and others remove registers from cur_line,
# but they stay in reg_order. Avoid duplicates.
if regnum not in reg_order:
reg_order.append(regnum)
for instr in self.instructions:
# Throughout this loop, cur_line is the current line. Some
# instructions add it to the table, but most instructions just
# update it without adding it to the table.
name = instruction_name(instr.opcode)
if name == 'DW_CFA_set_loc':
table.append(copy.copy(cur_line))
cur_line['pc'] = instr.args[0]
elif name in ( 'DW_CFA_advance_loc1', 'DW_CFA_advance_loc2',
'DW_CFA_advance_loc4', 'DW_CFA_advance_loc'):
table.append(copy.copy(cur_line))
cur_line['pc'] += instr.args[0] * cie['code_alignment_factor']
elif name == 'DW_CFA_def_cfa':
cur_line['cfa'] = CFARule(
reg=instr.args[0],
offset=instr.args[1])
elif name == 'DW_CFA_def_cfa_sf':
cur_line['cfa'] = CFARule(
reg=instr.args[0],
offset=instr.args[1] * cie['code_alignment_factor'])
elif name == 'DW_CFA_def_cfa_register':
cur_line['cfa'] = CFARule(
reg=instr.args[0],
offset=cur_line['cfa'].offset)
elif name == 'DW_CFA_def_cfa_offset':
cur_line['cfa'] = CFARule(
reg=cur_line['cfa'].reg,
offset=instr.args[0])
elif name == 'DW_CFA_def_cfa_offset_sf':
cur_line['cfa'] = CFARule(
reg=cur_line['cfa'].reg,
offset=instr.args[0] * cie['data_alignment_factor'])
elif name == 'DW_CFA_def_cfa_expression':
cur_line['cfa'] = CFARule(expr=instr.args[0])
elif name == 'DW_CFA_undefined':
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(RegisterRule.UNDEFINED)
elif name == 'DW_CFA_same_value':
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(RegisterRule.SAME_VALUE)
elif name in ( 'DW_CFA_offset', 'DW_CFA_offset_extended',
'DW_CFA_offset_extended_sf'):
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(
RegisterRule.OFFSET,
instr.args[1] * cie['data_alignment_factor'])
elif name in ('DW_CFA_val_offset', 'DW_CFA_val_offset_sf'):
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(
RegisterRule.VAL_OFFSET,
instr.args[1] * cie['data_alignment_factor'])
elif name == 'DW_CFA_register':
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(
RegisterRule.REGISTER,
instr.args[1])
elif name == 'DW_CFA_expression':
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(
RegisterRule.EXPRESSION,
instr.args[1])
elif name == 'DW_CFA_val_expression':
_add_to_order(instr.args[0])
cur_line[instr.args[0]] = RegisterRule(
RegisterRule.VAL_EXPRESSION,
instr.args[1])
elif name in ('DW_CFA_restore', 'DW_CFA_restore_extended'):
_add_to_order(instr.args[0])
dwarf_assert(
isinstance(self, FDE),
'%s instruction must be in a FDE' % name)
if instr.args[0] in last_line_in_CIE:
cur_line[instr.args[0]] = last_line_in_CIE[instr.args[0]]
else:
cur_line.pop(instr.args[0], None)
elif name == 'DW_CFA_remember_state':
line_stack.append(copy.deepcopy(cur_line))
elif name == 'DW_CFA_restore_state':
pc = cur_line['pc']
cur_line = line_stack.pop()
cur_line['pc'] = pc
# The current line is appended to the table after all instructions
# have ended, if there were instructions.
if cur_line['cfa'].reg is not None or len(cur_line) > 2:
table.append(cur_line)
return DecodedCallFrameTable(table=table, reg_order=reg_order)
# A CIE and FDE have exactly the same functionality, except that a FDE has
# a pointer to its CIE. The functionality was wholly encapsulated in CFIEntry,
# so the CIE and FDE classes exists separately for identification (instead
# of having an explicit "entry_type" field in CFIEntry).
#
class CIE(CFIEntry):
pass
class FDE(CFIEntry):
def __init__(self, header, structs, instructions, offset, augmentation_bytes=None, cie=None, lsda_pointer=None):
super(FDE, self).__init__(header, structs, instructions, offset, augmentation_bytes=augmentation_bytes, cie=cie)
self.lsda_pointer = lsda_pointer
class ZERO(object):
""" End marker for the sequence of CIE/FDE.
This is specific to `.eh_frame` sections: this kind of entry does not exist
in pure DWARF. `readelf` displays these as "ZERO terminator", hence the
class name.
"""
def __init__(self, offset):
self.offset = offset
class RegisterRule(object):
""" Register rules are used to find registers in call frames. Each rule
consists of a type (enumeration following DWARFv3 section 6.4.1)
and an optional argument to augment the type.
"""
UNDEFINED = 'UNDEFINED'
SAME_VALUE = 'SAME_VALUE'
OFFSET = 'OFFSET'
VAL_OFFSET = 'VAL_OFFSET'
REGISTER = 'REGISTER'
EXPRESSION = 'EXPRESSION'
VAL_EXPRESSION = 'VAL_EXPRESSION'
ARCHITECTURAL = 'ARCHITECTURAL'
def __init__(self, type, arg=None):
self.type = type
self.arg = arg
def __repr__(self):
return 'RegisterRule(%s, %s)' % (self.type, self.arg)
class CFARule(object):
""" A CFA rule is used to compute the CFA for each location. It either
consists of a register+offset, or a DWARF expression.
"""
def __init__(self, reg=None, offset=None, expr=None):
self.reg = reg
self.offset = offset
self.expr = expr
def __repr__(self):
return 'CFARule(reg=%s, offset=%s, expr=%s)' % (
self.reg, self.offset, self.expr)
# Represents the decoded CFI for an entry, which is just a large table,
# according to DWARFv3 section 6.4.1
#
# DecodedCallFrameTable is a simple named tuple to group together the table
# and the register appearance order.
#
# table:
#
# A list of dicts that represent "lines" in the decoded table. Each line has
# some special dict entries: 'pc' for the location/program counter (LOC),
# and 'cfa' for the CFARule to locate the CFA on that line.
# The other entries are keyed by register numbers with RegisterRule values,
# and describe the rules for these registers.
#
# reg_order:
#
# A list of register numbers that are described in the table by the order of
# their appearance.
#
DecodedCallFrameTable = namedtuple(
'DecodedCallFrameTable', 'table reg_order')
#---------------- PRIVATE ----------------#
_PRIMARY_MASK = 0b11000000
_PRIMARY_ARG_MASK = 0b00111111
# This dictionary is filled by automatically scanning the constants module
# for DW_CFA_* instructions, and mapping their values to names. Since all
# names were imported from constants with `import *`, we look in globals()
_OPCODE_NAME_MAP = {}
for name in list(globals().keys()):
if name.startswith('DW_CFA'):
_OPCODE_NAME_MAP[globals()[name]] = name
|