File: pv.rst

package info (click to toggle)
python-pyepics 3.5.7%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,336 kB
  • sloc: python: 10,539; makefile: 112; javascript: 104; sh: 53
file content (1000 lines) | stat: -rw-r--r-- 38,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
..  _pv-label:

==============================
PV: Epics Process Variables
==============================


.. module:: pv
   :synopsis: PV objects for Epics Channel Access

The :mod:`pv` module provides a higher-level class :class:`pv.PV`, which
creates a `PV` object for an EPICS Process Variable.  A `PV` object has
both methods and attributes for accessing it's properties.


The :class:`PV` class
=======================

.. class:: PV(pvname[, callback=None[, form='time'[, verbose=False[, auto_monitor=None[, count=None[, connection_callback=None[, connection_timeout=None[, access_callback=None]]]]]]]] )
   create a PV object for a named Epics Process Variable.

   :param pvname: name of Epics Process Variable
   :param callback:  user-defined callback function on changes to PV value or state.
   :type callback: callable, tuple, list or None
   :param form:  which epics *data type* to use:  the 'native', 'time', or the 'ctrl' (Control) variant.
   :type form: string, one of ('native','ctrl', or 'time')
   :param verbose:  whether to print out debugging messages
   :type verbose: ``True``/``False``
   :param auto_monitor:  whether to automatically monitor the PV for changes.
   :type auto_monitor: ``None``, ``True``, ``False``, or bitmask (see :ref:`pv-automonitor-label`)
   :param count: number of data elements to return by default (see :ref:`here <pv-get-label>`)
   :type count: int
   :param connection_callback: user-defined function called on changes to PV connection status.
   :type connection_callback:  callable or ``None``
   :param connection_timeout:  time (in seconds) to wait for connection before giving up
   :type connection_timeout:  float or ``None``
   :param access_callback: user-defined function called on changes to PV access rights
   :type access_callback: callable or ``None``

Once created, a PV should (barring any network issues) automatically
connect and be ready to use.

      >>> from epics import PV
      >>> p = PV('XX:m1.VAL')
      >>> print(p.get())
      >>> print(p.count, p.type)


The *pvname* is required, and is the name of an existing Process Variable.

The *callback* parameter specifies one or more python methods to be called
on changes, as discussed in more detail at :ref:`pv-callbacks-label`

The *connection_callback* parameter specifies a python method to be called
on changes to the connection status of the PV (that is, when it connects or
disconnects).  This is discussed in more detail at :ref:`pv-connection_callbacks-label`

The *form* parameter specifies which of the three variants 'native', 'ctrl'
(Control) or 'time' (the default) to use for the PV.  The 'native' form
returns just the value, the 'time' form includes the timestamp from the
server the PV lives on, as well as status information.  The control form
includes several additional fields such as limits to the PV, which can be
useful in some cases.  Also note that the additional 'ctrl' value fields
(see the :ref:`Table of Control Attributes <ctrlvars_table>`) can be
obtained with :meth:`get_ctrlvars` even for PVs of 'native' or 'time' form.

The *auto_monitor* parameter specifies whether the PV should be
automatically monitored.  See :ref:`pv-automonitor-label` for a detailed
description of this.

The *verbose* parameter specifies more verbose output on changes, and is
intended for debugging purposes.

The *access_callback* parameter specifies a python method to be called on
changes to the access rights of the PV (read/write access changes). This
is discussed in more detail :ref:`here <pv-access-rights-callback-label>`.



methods
~~~~~~~~

A `PV` has several methods for getting and setting its value and defining
callbacks to be executed when the PV changes.

..  _pv-get-label:

.. method:: get([, count=None[, as_string=False[, as_numpy=True[, timeout=None[, use_monitor=True, [with_ctrlvars=False]]]]]])

   get and return the current value of the PV

   :param count:  maximum number of array elements to return
   :type count:  integer or ``None``
   :param as_string:  whether to return the string representation of the  value.
   :type as_string: ``True``/``False``
   :param as_numpy:  whether to try to return a numpy array where appropriate.
   :type as_string: ``True``/``False``
   :param timeout:  maximum time to wait for data before returning ``None``.
   :type  timeout:  float or ``None``
   :param use_monitor:  whether to rely on monitor callbacks or explicitly get value now.
   :type use_monitor: ``True``/``False``

   see :ref:`pv-as-string-label` for details on how the string
   representation is determined.

   With the *as_numpy* option, an array PV (that is, a PV whose value has
   more than one element) will be returned as a numpy array, provided the
   numpy module is available.  See :ref:`arrays-large-label` for a
   discussion of strategies for how to best deal with very large arrays.

   The *use_monitor* option controls whether the most recent value from the automatic
   monitoring will be used or whether the value will be explicitly asked
   for right now.  Usually, you can rely on a PVs value being kept up to
   date, and so the default here is ``True``.  But, since network traffic
   is not instantaneous and hard to predict, the value returned with
   `use_monitor=True` may be out-of-date.

   The *timeout* sets how long (in seconds) to wait for the value to be
   sent.  This only applies with `use_monitor=False`, or if the PV is not
   automatically monitored.   Otherwise, the most recently received value
   will be sent immediately.

   The *with_ctrlvars* option requests DBR_CTRL data, including control limits,
   precision, and so on, in addition to the value normally returned.  This metadata
   will be available by accessing various attributes such as
   ``lower_ctrl_limit``.

   See :ref:`pv-automonitor-label` for more on monitoring PVs and
   :ref:`advanced-get-timeouts-label` for more details on what happens when
   a :func:`pv.get` times out.


.. method:: get_with_metadata([, form=None, [count=None[, as_string=False[, as_numpy=True[, timeout=None[, use_monitor=True, [with_ctrlvars=False]]]]]]])

   Returns a dictionary of the current value and associated metadata

   :param form:  EPICS *data type* to request:  the 'native', or the 'ctrl' (Control) or 'time' variant. Defaults to the PV instance attribute ``form``.
   :type form:  {'native', 'time', 'ctrl', None}
   :param count:  maximum number of array elements to return
   :type count:  integer or ``None``
   :param as_string:  whether to return the string representation of the  value.
   :type as_string: ``True``/``False``
   :param as_numpy:  whether to try to return a numpy array where appropriate.
   :type as_string: ``True``/``False``
   :param timeout:  maximum time to wait for data before returning ``None``.
   :type  timeout:  float or ``None``
   :param use_monitor:  whether to rely on monitor callbacks or explicitly get value now.
   :type use_monitor: ``True``/``False``

   See ``PV.get``, above, for further notes on each of these parameters.

   Each request to EPICS can optionally contain additional metadata associated
   with the value.  While ``PV.get`` updates the PV instance with any metadata,
   ``get_with_metadata`` will return the requested metadata and value in a
   dictionary.

   The exception is when the PV is set to auto-monitor and the `use_monitor`
   parameter here is set.  This means that both the value and metadata will
   used the cached values instead of making a new request.  Because of this,
   the metadata and value returned here will be a full dictionary of all known
   metadata for the PV instance.


.. method:: put(value[, wait=False[, timeout=30.0[, use_complete=False[, callback=None[, callback_data=None]]]]])

   set the PV value, optionally waiting to return until processing has
   completed, or setting the :attr:`put_complete` to indicate complete-ness.

   :param value:  value to set PV
   :param wait:  whether to wait for processing to complete (or time-out) before returning.
   :type  wait:  ``True``/``False``
   :param timeout:  maximum time to wait for processing to complete before returning anyway.
   :type  timeout:  float
   :param use_complete:  whether to use a built-in callback to set :attr:`put_complete`.
   :type  use_complete:  ``True``/``False``
   :param callback: user-supplied function to run when processing has completed.
   :type callback: ``None`` or a valid python function
   :param callback_data: extra data to pass on to a user-supplied callback function.

The `wait` and `callback` arguments, as well as the 'use_complete' / :attr:`put_complete`
attribute give a few options for knowing that a :meth:`put` has
completed.   See :ref:`pv-putwait-label` for more details.

..  _pv-get-ctrlvars-label:

.. method:: get_ctrlvars()

   returns a dictionary of the **control values** for the PV.  This
   dictionary may have many members, depending on the data type of PV.  See
   the :ref:`Table of Control Attributes <ctrlvars_table>`  for details.

.. method:: get_timevars()

   returns a dictionary of the **time values** for the PV, which
   include `status`, `severity`, and the `timestamp` from the CA
   server.

.. method:: poll([evt=1.e-4, [iot=1.0]])

   poll for changes.  This simply calls :meth:`epics.ca.poll`

   :param evt:  time to pass to :meth:`epics.ca.pend_event`
   :type  evt:  float
   :param iot:  time to pass to :meth:`epics.ca.pend_io`
   :type  iot:  float

.. method:: connect([timeout=None])

   this explicitly connects a PV, and returns whether or not it has
   successfully connected.  It is probably not that useful, as connection
   should happen automatically. See :meth:`wait_for_connection`.

   :param timeout:  maximum connection time, passed to :meth:`epics.ca.connect_channel`
   :type  timeout:  float
   :rtype:    ``True``/``False``

   if timeout is ``None``, the PVs connection_timeout parameter will be used. If that is also ``None``,
   :data:`episc.ca.DEFAULT_CONNECTION_TIMEOUT`  will be used.

.. method:: wait_for_connection([timeout=None])

   this waits until a PV is connected, or has timed-out waiting for a
   connection.  Returns  whether the connection has occurred.

   :param timeout:  maximum connection time.
   :type  timeout:  float
   :rtype:    ``True``/``False``

   if timeout is ``None``, the PVs connection_timeout parameter will be used. If that is also ``None``,
   :data:`epics.ca.DEFAULT_CONNECTION_TIMEOUT`  will be used.

.. method:: disconnect()

   disconnect a PV, clearing all callbacks.

.. method:: reconnect()

   reconnect (or try to) a disconnected PV.

.. method:: clear_auto_monitor()

   turn off automatic monitoring of a PV.  Note that this will suspend
   all event callbacks on a PV at the CA level by calling
   :func:`epics.ca.clear_subscription`, but will not clear the list of PVs
   callbacks.  This means that doing :meth:`reconnect` will resume
   event processing including any callbacks or the PV.

.. method:: add_callback(callback=None[, index=None [, with_ctrlvars=True[, **kw]])

   adds a user-defined callback routine to be run on each change event for
   this PV.  Returns the integer *index*  for the callback.

   :param callback: user-supplied function to run when PV changes.
   :type callback: ``None`` or callable
   :param index: identifying key for this callback
   :param with_ctrlvars:  whether to (try to) make sure that accurate  ``control values`` will be sent to the callback.
   :type index: ``None`` (integer will be produced) or immutable
   :param kw: additional keyword/value arguments to pass to each execution of the callback.
   :rtype:  integer

   Note that multiple callbacks can be defined, each having its own index
   (a dictionary key, typically an integer).   When a PV changes, all the
   defined callbacks will be executed.  They will be called in order (by
   sorting  the keys of the :attr:`callbacks` dictionary)

   See also: :attr:`callbacks`  attribute, :ref:`pv-callbacks-label`

.. method:: remove_callback(index=None)

   remove a user-defined callback routine using supplied

   :param index: index of user-supplied function, as returned by :meth:`add_callback`,
        and also to key for  this callback in the  :attr:`callbacks` dictionary.
   :type index: ``None`` or integer
   :rtype:  integer

   If only one callback is defined an index=``None``, this will clear the
   only defined callback.

   See also: :attr:`callbacks`  attribute, :ref:`pv-callbacks-label`

.. method:: clear_callbacks()

   remove all user-defined callback routine.

.. method:: run_callbacks()

   execute all user-defined callbacks right now, even if the PV has not
   changed.  Useful for debugging!

   See also: :attr:`callbacks`  attribute, :ref:`pv-callbacks-label`

.. method:: run_callback(index)

   execute a particular user-defined callback right now, even if the PV
   has not changed.  Useful for debugging!

   See also: :attr:`callbacks`  attribute, :ref:`pv-callbacks-label`

.. method:: force_read_access_rights()

   force a read of the access rights for a PV.  Normally, a PV will
   have access rights determined automatically and subscribe to
   changes in access rights.  But sometimes (especially 64-bit
   Windows), the automatically reported values are wrong.  This
   methods will explicitly read the access rights.

attributes
~~~~~~~~~~

A PV object has many attributes, each associated with some property of the
underlying PV: its *value*, *host*, *count*, and so on.  For properties
that can change, the PV attribute will hold the latest value for the
corresponding property,  Most attributes are **read-only**, and cannot be
assigned to.  The exception to this rule is the :attr:`value` attribute.

.. attribute:: value

   The current value of the PV.

   **Note**: The :attr:`value` attribute can be assigned to.
   When read, the latest value will be returned, even if that means a
   :meth:`get` needs to be called.

   Assigning to :attr:`value` is equivalent to setting the value with the
   :meth:`put` method.

   >>> from epics import PV
   >>> p1 = PV('xxx.VAL')
   >>> print(p1.value)
   1.00
   >>> p1.value = 2.00

.. attribute:: char_value

   The string representation of the string, as described in :meth:`get`.

.. attribute:: status

   The PV status, which will be 0 for a normal, connected PV.

.. attribute:: type

   string describing data type of PV, such as `double`, `float`, `enum`, `string`,
   `int`,  `long`, `char`, or one of the `ctrl` or `time` variants of these, which
   will be named `ctrl_double`, `time_enum`, and so on.  See the
   :ref:`Table of DBR Types <dbrtype_table>`


.. attribute:: ftype

  The integer value (from the underlying C library) indicating the PV data
  type according to :ref:`Table of DBR Types <dbrtype_table>`

.. attribute:: host

    string of host machine provide this PV.

.. attribute:: count

   number of data elements in a PV.  1 except for waveform PVs, where it
   gives the number of elements in the waveform. For recent versions of
   Epics Base (3.14.11 and later?), this gives the `.NORD` field, which
   gives the number of elements last put into the PV and which may be less
   than the maximum number allowed (see `nelm` below).

.. attribute:: nelm

   number of data elements in a PV.  1 except for waveform PVs where it
   gives the maximum number of elements in the waveform. For recent
   versions of Epics Base (3.14.11 and later?), this gives the `.NELM`
   parameter.  See also the `count` attribute above.

.. attribute:: read_access

   Boolean (``True``/``False``) for whether PV is readable

.. attribute:: write_access

   Boolean (``True``/``False``) for whether PV is writable

.. attribute:: access

   string describing read/write access.  One of
   'read/write','read-only','write-only', 'no access'.

.. attribute:: severity

   severity value of PV. Usually 0 for PVs that are not in an alarm
   condition.

.. attribute:: timestamp

   floating point timestamp (relative to the POSIX time origin, not the
   EPICS time origin) of the last event seen for this PV.  Note that this
   is will contain the timestamp from the Epics server if the PV object was
   created with the ``form='time'`` option.  Otherwise, the timestamp will
   be set to time according to the client, indicating when the data arrive
   from the server.

.. attribute:: posixseconds

   Integer number of seconds (relative to the POSIX time origin, not the
   EPICS time origin) of the last event seen for this PV.  This will be set
   only if the PV object was created with the ``form='time'`` option, and
   will reflect the timestamp from the server.  Otherwise, this value will
   be 0 which can be used to signal that the `timestamp` attribute is from
   the client.

.. attribute:: nanoseconds

   Integer number of nanoseconds for the last event seen for this PV.  This
   will be set only if the PV object was created with the ``form='time'``
   option, and will give higher time resolution than the `timestamp`
   attribute.

.. attribute:: precision

   number of decimal places of precision to use for float and double PVs

.. attribute:: units

   string of engineering units for PV

.. attribute:: enum_strs

   a list of strings for the enumeration states  of this PV (for enum PVs)

.. attribute:: info

   a string paragraph (ie, including newlines) showing much of the
   information about the PV.

.. attribute:: upper_disp_limit

.. attribute:: lower_disp_limit

.. attribute:: upper_alarm_limit

.. attribute:: lower_alarm_limit

.. attribute:: lower_warning_limit

.. attribute:: upper_warning_limit

.. attribute:: upper_ctrl_limit

.. attribute:: lower_ctrl_limit

   These are all the various kinds of limits for a PV.

.. attribute:: put_complete

   a Boolean (``True``/``False``) value for whether the most recent
   :meth:`put`  has completed.

.. attribute:: callbacks

   a dictionary of currently defined callbacks, to be run on changes to the
   PV.  This dictionary has integer keys (generally in increasing order of
   when they were defined) which sets which order for executing the
   callbacks.  The values of this dictionary are tuples of `(callback,
   keyword_arguments)`.

   **Note**: The :attr:`callbacks` attribute can be assigned to or
          manipulated directly.  This is not recommended. Use the
          methods :meth:`add_callback`, :meth:`remove_callback`, and
          :meth:`clear_callbacks` instead of altering this dictionary directly.

.. attribute:: connection_callbacks

   a simple list of connection callbacks: functions to be run when the
   connection status of the PV changes. See
   :ref:`pv-connection_callbacks-label` for more details.

.. attribute:: access_callbacks

   an :attr:`list` of access callbacks: functions to be run when the
   access rights of the PV changes. See
   :ref:`pv-access-rights-callback-label` for more details.

..  _pv-as-string-label:

String representation for a PV
================================

The string representation for a `PV`, as returned either with the
*as_string* argument to :meth:`epics.ca.get` or from the :attr:`char_value`
attribute (they are equivalent) needs some further explanation.

The value of the string representation (hereafter, the :attr:`char_value`),
will depend on the native type and count of a `PV`.
:ref:`Table of String Representations <charvalue_table>`

.. _charvalue_table:

   Table of String Representations:  How raw data :attr:`value` is mapped
   to :attr:`char_value` for different native data types.

    =============== ========== ==============================
     *data types*    *count*     *char_value*
    =============== ========== ==============================
     string               1       = value
     char                 1      = value
     short                1      = str(value)
     long                 1      = str(value)
     enum                 1      = enum_str[value]
     double               1      = ("%%.%if" % (precision)) % value
     float                1      = ("%%.%if" % (precision)) % value
     char               > 1      = long string from bytes in array
     all others         > 1      = <array size=*count*, type=*type*>
    =============== ========== ==============================

For double/float values with large exponents, the formatting will be
`("%%.%ig" % (precision)) % value`.  For character waveforms (*char* data
with *count* > 1), the :attr:`char_value` will be set according to::

   >>> firstnull  = val.index(0)
   >>> if firstnull == -1: firstnull= len(val)
   >>> char_value = ''.join([chr(i) for i in val[:firstnull]).rstrip()

.. _pv-automonitor-label:

Automatic Monitoring of a PV
================================

When creating a PV, the *auto_monitor* parameter specifies whether the PV
should be automatically monitored or not.  Automatic monitoring means that
an internal callback will be registered for changes.  Any callbacks defined
by the user will be called by this internal callback when changes occur.

For most scalar-value PVs, this automatic monitoring is desirable, as the
PV will see all changes (and run callbacks) without any additional
interaction from the user. The PV's value will always be up-to-date and no
unnecessary network traffic is needed.

Possible values for :attr:`auto_monitor` are:

``False``
   For some PVs, especially those that change much more rapidly than you care
   about or those that contain large arrays as values, auto_monitoring can add
   network traffic that you don't need.  For these, you may wish to create
   your PVs with *auto_monitor=False*.  When you do this, you will need to
   make calls to :meth:`get` to explicitly get the latest value.

``None``
  The default value for *auto_monitor* is ``None``, and is set to
  ``True`` if the element count for the PV is smaller than
  :data:`epics.ca.AUTOMONITOR_MAXLENGTH` (default of 65536).  To suppress
  monitoring of PVs with fewer array values, you will have to explicitly
  turn *auto_monitor* to ``False``. For waveform arrays with more elements,
  automatic monitoring will not be done unless you explicitly set
  *auto_monitor=True*, or to an explicit mask.  See
  :ref:`arrays-large-label` for more details.

``True``
  When *auto_monitor* is set to ``True``, the value will be monitored using
  the default subscription mask set at :data:`epics.ca.DEFAULT_SUBSCRIPTION_MASK`.

  This mask determines which kinds of changes cause the PV to update. By
  default, the subscription updates when the PV value changes by more
  than the monitor deadband, or when the PV alarm status changes. This
  behavior is the same as the default in EPICS' *camonitor* tool.

*Mask*
  It is also possible to request an explicit type of CA subscription by
  setting *auto_monitor* to a numeric subscription mask made up of
  dbr.DBE_ALARM, dbr.DBE_LOG and/or dbr.DBE_VALUE. This mask will be
  passed directly to :meth:`epics.ca.create_subscription` An example would be::

    pv1 = PV('AAA', auto_monitor=dbr.DBE_VALUE)
    pv2 = PV('BBB', auto_monitor=dbr.DBE_VALUE|dbr.DBE_ALARM)
    pv3 = PV('CCC', auto_monitor=dbr.DBE_VALUE|dbr.DBE_ALARM|dbr.DBE_LOG)

  which will generate callbacks for pv1 only when the value of 'AAA'
  changes, while pv2 will receive callbacks if the value or alarm state of
  'BBB' changes, and pv3 will receive callbacks for all changes to 'CCC'.
  Note that these dbr.DBE_**** constants are ORed together as a bitmask.

..  _pv-callbacks-label:

User-supplied Callback functions
================================

This section describes user-defined functions that are called when the
value of a PV changes.  These callback functions are useful as they allow
you to be notified of changes without having to continually ask for a PVs
current value.  Much of this information is similar to that in
:ref:`ca-callbacks-label` for the :mod:`ca` module, though there are some
important enhancements to callbacks on `PV` objects.

You can define more than one callback function per PV to be run on value
changes.  These functions can be specified when creating a PV, with the
*callback* argument which can take either a single callback function or a
list or tuple of callback functions.  After a PV has been created, you can
add callback functions with :meth:`add_callback`, remove them with
:meth:`remove_callback`, and explicitly run them with :meth:`run_callback`.
Each callback has an internal unique *index* (a small integer number) that
can be used for specifying which one to add, remove, and run.

When defining a callback function to be run on changes to a PV, it is
important to know two things:

    1)  how your function will be called.
    2)  what is permissible to do inside your callback function.

Callback functions will be called with several keyword arguments.  You
should be prepared to have them passed to your function, and should always
include `**kw` to catch all arguments.  Your callback will be sent the
following keyword parameters:

    * `pvname`: the name of the pv
    * `value`: the latest value
    * `char_value`: string representation of value
    * `count`: the number of data elements
    * `ftype`: the numerical CA type indicating the data type
    * `type`: the python type for the data
    * `status`: the status of the PV (0 for OK)
    * `precision`: number of decimal places of precision for floating point values
    * `units`:  string for PV units
    * `severity`: PV severity
    * `timestamp`: timestamp from CA server.
    * `read_access`: read access (``True``/``False``)
    * `write_access`: write access (``True``/``False``)
    * `access`: string description of  read- and write-access
    * `host`: host machine and CA port serving PV
    * `enum_strs`: the list of enumeration strings
    * `upper_disp_limit`: upper display limit
    * `lower_disp_limit`:  lower display limit
    * `upper_alarm_limit`:  upper alarm limit
    * `lower_alarm_limit`:  lower alarm limit
    * `upper_warning_limit`:  upper warning limit
    * `lower_warning_limit`:  lower warning limit
    * `upper_ctrl_limit`:  upper control limit
    * `lower_ctrl_limit`:  lower control limit
    * `chid`:  integer channel ID
    * `cb_info`:  (index, self) tuple containing callback ID
                  and the PV object

Some of these may not be directly applicable to all PV data types, and some
values may be ``None`` if the control parameters have not yet been fetched with
:meth:`get_ctrlvars`.

It is important to keep in mind that the callback function will be run
*inside* a CA function, and cannot reliably make any other CA calls.  It is
helpful to think "this all happens inside of a :func:`pend_event` call",
and in an epics thread that may or may not be the main thread of your
program.  It is advisable to keep the callback functions short and not
resource-intensive.  Consider strategies which use the callback only to
record that a change has occurred and then act on that change later --
perhaps in a separate thread, perhaps after :func:`pend_event` has
completed.

The `cb_info` parameter supplied to the callback needs special attention,
as it is the only non-Epics information passed.   The `cb_info` parameter
will be a tuple containing (:attr:`index`, :attr:`self`) where
:attr:`index` is the key for the :attr:`callbacks` dictionary for the PV
and :attr:`self` *is* PV object.  A principle use of this tuple is to
**remove the current callback**  if an error happens, as for example in GUI
code if the widget that the callback is meant to update disappears.

..  _pv-connection_callbacks-label:

User-supplied Connection Callback functions
=============================================

A *connection* callback is a user-defined function that is called when the
connection status of a PV changes -- that is, when a PV initially
connects, disconnects or reconnects due to the process serving the PV going
away, or loss of network connection.  A connection callback can be
specified when a PV is created, or can be added by appending to the
:attr:`connection_callbacks` list.  If there is more than one connection
callback defined, they will all be run when the connection state changes.

A connection callback should be prepared to receive the following keyword arguments:

    * `pvname`: the name of the pv
    * `conn`: the connection status

where *conn* will be either ``True` or ``False``, specifying whether the PV is
now connected.   A simple example is given below.

..  _pv-access-rights-callback-label:

User-supplied Access Rights Callback functions
===============================================

An *access rights* callback is a user-defined function that is called when the
access rights - read/write permissions - of a PV undergo changes. The callback
will be invoked upon successful initialization and at all events that change
a PV's access rights, including disconnection and reconnection events.
An *access rights* callback can be specified when a PV is created, or can be
added by appending to the :attr:`access_callbacks` list of the PV object.
If there are multiple access rights callbacks defined for a PV, they will all
be run on access rights events.

..  _pv-putwait-label:

Put with wait, put callbacks, and  put_complete
========================================================

Some EPICS records take a significant amount of time to fully process, and
sometimes you want to wait until the processing completes before going on.
There are a few ways to accomplish this.  First, one can simply wait until
the processing is done::

    import epics
    p = epics.PV('XXX')
    p.put(1.0, wait=True)
    print('Done')

This will hang until the processing of the PV completes (motor moving, etc)
before printing 'Done'.   You can also specify a maximum time to wait -- a
*timeout* (in seconds)::

    p.put(1.0, wait=True, timeout=30)

which will wait up to 30 seconds.  For the pedantic, this timeout should
not be used as an accurate clock -- the actual wait time may be slightly
longer.

A second method is to use the 'use_complete' option and watch for the
:attr:`put_complete` attribute to become ``True`` after a :meth:`put`.  This is
somewhat more flexible than using `wait=True` as above, because you can more
carefully control how often you look for a :meth:`put` to complete, and
what to do in the interim.  A simple example would be::

    p.put(1.0, use_complete=True)
    waiting = True
    while waiting:
        time.sleep(0.001)
        waiting = not p.put_complete

An additional advantage of this approach is that you can easily wait for
multiple PVs to complete with python's built-in *all* function, as with::

    pvgroup = (epics.PV('XXX'), epics.PV('YYY'), epics.PV('ZZZ'))
    newvals = (1.0, 2.0,  3.0)
    for pv, val in zip(pvgroup, newvals):
        pv.put(val, use_complete=True)

    waiting = True
    while waiting:
        time.sleep(0.001)
        waiting = not all([pv.put_complete for pv in pvgroup])
    print('All puts are done!')

For maximum flexibility, one can all define a *put callback*, a function to
be run when the :meth:`put` has completed.   This function requires a
*pvname* keyword argument, but will receive no others, unless you pass in
data with the *callback_data* argument (which should be dict-like) to
:meth:`put`.   A simple example would be::

    pv = epics.PV('XXX')
    def onPutComplete(pvname=None, **kws):
        print(f'Put done for {pvname}')

    pv.put(1.0, callback=onPutComplete)

..  _pv-cache-label:

The :func:`get_pv` function and :attr:`_PVcache_` cache of PVs
============================================================================

As mentioned in the previous chapter, a cache of PVs is maintained for each
process using pyepics.  When using :func:`epics.caget`, :func:`epics.caput`
and so forth, or when creating a :class:`PV` directly, the corresponding PV
is kept in a global cache, held in :attr:`pv._PVcache_`.

The function :func:`get_pv` will retrieve the named PV from this cache, or
create a new :class:`PV` if one is not found.  In long-running or complex
processes, it is not unusual to access a particular PV many times, perhaps
calling a function that creates a PV but only keeping that PV object for
the life of the function.  Using :func:`get_pv` instead of creating a
:class:`PV` can improve performance (the PV is already connected) and is
highly recommended.

..  function:: get_pv(pvname[, form='time'[, connect=False[, timeout=5[, context=None[, **kws]]]]])

   retrieves a PV from :attr:`_PVcache` or creates and returns a new PV.

   :param pvname: name of Epics Process Variable
   :param form:  which epics *data type* to use:  the 'native' , or the 'ctrl' (Control) or 'time' variant.
   :type form: string, one of ('native','ctrl', or 'time')
   :param connect:  whether to wait for the PV to connect.
   :type connect:  ``True``/``False``
   :param timeout:  maximum time to wait (in seconds) for value before returning None.
   :type timeout:  float or ``None``
   :param context:  integer threading context.
   :type context: integer or  ``None`` (default)


   Additional keywords are passed directly to :class:`PV`.

.. attribute:: _PVcache_

   A cache of :class:`PV` objects for the process.

..  _pv-examples-label:

Examples
============

Some simple examples using PVs follow.

Basic Use
~~~~~~~~~~~~

The simplest approach is to simply create a PV and use its :attr:`value`
attribute:

   >>> from epics import PV
   >>> p1 = PV('xxx.VAL')
   >>> print(p1.value)
   1.00
   >>> p1.value = 2.00

The *print p1.value* line automatically fetches the current PV value.  The
*p1.value = 2.00* line does a :func:`put` to set the value, causing any
necessary processing over the network.

The above example is equivalent to

   >>> from epics import PV
   >>> p1 = PV('xxx.VAL')
   >>> print(p1.get())
   1.00
   >>> p1.put(value = 2.00)

To get a string representation of the value, you can use either

   >>> print(p1.get(as_string=True))
   '1.000'

or, equivalently

   >>> print(p1.char_value)
   '1.000'

Requests including Metadata
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is also possible to get the metadata associated with a single Channel Access
request using :func:`get_with_metadata`::

   >>> from epics import PV
   >>> p1 = PV('xxx.VAL', form='time')

   >>> print(p1.get())
   1.00

   >>> p1.get_with_metadata()
   {'status': 0,
    'severity': 0,
    'timestamp': 1543429156.811018,
    'posixseconds': 1543429156.0,
    'nanoseconds': 811018603,
    'value': 1.0}

   >>> print(p1.get_with_metadata(form='ctrl'))
   {'upper_disp_limit': 100.0,
    'lower_disp_limit': -100.0,
    'upper_alarm_limit': 0.0,
    'upper_warning_limit': 0.0,
    'lower_warning_limit': 0.0,
    'lower_alarm_limit': 0.0,
    'upper_ctrl_limit': 100.0,
    'lower_ctrl_limit': -100.0,
    'precision': 3,
    'units': 'deg',
    'status': 0,
    'severity': 0,
    'value': 1.0}


Example of using info and more properties examples
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A PV has many attributes.  This can be seen from its *info* paragraph:

>>> import epics
>>> p = epics.get_pv('13IDA:m3')
>>> print(p.info)
== 13IDA:m3  (native_double) ==
   value      = 0.2
   char_value = '0.200'
   count      = 1
   type       = double
   units      = mm
   precision  = 3
   host       = ioc13ida.cars.aps.anl.gov:5064
   access     = read/write
   status     = 0
   severity   = 0
   timestamp  = 1274809682.967 (2010-05-25 12:48:02.967364)
   upper_ctrl_limit    = 5.49393415451
   lower_ctrl_limit    = -14.5060658455
   upper_disp_limit    = 5.49393415451
   lower_disp_limit    = -14.5060658455
   upper_alarm_limit   = 0.0
   lower_alarm_limit   = 0.0
   upper_warning_limit = 0.0
   lower_warning_limit = 0.0
   PV is internally monitored, with 0 user-defined callbacks:
=============================

The individual attributes can also be accessed as below.  Many of these
(the *control attributes*, see :ref:`Table of Control Attributes
<ctrlvars_table>`) will not be filled in until either the :attr:`info`
attribute is accessed or until :meth:`get_ctrlvars` is called.

>>>  print(p.type)
double
>>> print(p.units, p.precision, p.lower_disp_limit)
mm 3 -14.5060658455


Getting a string value
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is not uncommon to want a string representation of a PVs value, for
example to show in a display window or to write to some report.  For string
PVs and integer PVs, this is a simple task.  For floating point values,
there is ambiguity how many significant digits to show. EPICS PVs all have
a :attr:`precision` field. which sets how many digits after the decimal
place should be described.  In addition, for ENUM PVs, it would be
desire able to get at the name of the ENUM state, not just its integer
value.

To get the string representation of a PVs value, use either the
:attr:`char_value` attribute or the `as_string=True` argument to :meth:`get`


Example of :meth:`put`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To put a new value to a variable, either of these two approaches can be
used:

>>> import epics
>>> p = epics.PV('XXX')
>>> p.put(1.0)

Or (equivalently):

>>> import epics
>>> p = epics.PV('XXX')
>>> p.value = 1.0

The :attr:`value` attribute is the only attribute that can be set.


Example of simple callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is often useful to get a notification of when a PV changes.  In general,
it would be inconvenient (and possibly inefficient) to have to continually
ask if a PVs value has changed.  Instead, it is better to set a *callback*
function: a function to be run when the value has changed.

A simple example of this would be:

.. literalinclude:: examples/pv_added_callback.py

This first defines a *callback function* called `onChanges()` and then
simply waits for changes to happen.  Note that the callback function should
take keyword arguments, and generally use `**kw` to catch all arguments.
See :ref:`pv-callbacks-label` for more details.

Example of connection callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A connection callback:

.. literalinclude:: examples/pv_connection_callback.py


Example of an access rights callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Associating an access rights callback with a PV:

.. literalinclude:: examples/pv_access_callback.py



Example of a property callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Callbacks can be set up to receive events not only when a PVs value changes,
but also when certain of the PVs properties such as units or limits change.
To get such callbacks, subscribe with `auto_monitor` set to both Value and
Property changes, as with:

.. literalinclude:: examples/pv_property_callback.py

note that in this example `form='ctrl'` is used.  If the default form of 'time'
(or 'native') had been used, the callback would be called when the property
changed, but the value of that property (or even which property changed) would
not be included in the callback arguments.