ENTHOUGHT

SCIENTIFIC COMPUTING SOLUTIONS

The DockWindowFeature
Feature of DockWindows

David C. Morrill, Enthought, Inc.

Version 1, 21-Dec-06

© 2006 Enthought, Inc.
All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source or derived format (for example, Portable Document Format or
Hypertext Markup Language) must retain the above copyright notice, this list of
conditions and the following disclaimer.

Neither the name of the Enthought nor the names of its contributors may be used to
endorse or promote products derived from this document without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners.

Enthought, Inc.

515 Congress Avenue

Suite 2100

Austin TX 78701
1.512.536.1057 (voice)
1.512.536.1059 (fax)
http://www.enthought.com
info@enthought.com

http://www.enthought.com/
mailto:info@enthought.com

Table of Contents

1 What is a DOCKWINAOW?uueieiciieenicinteeenisteneensssssesesnnens 1
2 What is a DockWindowFeature?...........uvvreeeenennennncnccnnnnnen 4
3 Using DockWindowFeatures...........ccivvcnnirenesncsnnrencsncsencnsennnes 6
3.1 Adding a Featureccccocoiiiiiiiniiiiiiiiiicccc 6
3.1.1 Adding a Feature using the DockWindow API 6

3.1.2 Adding a Feature as an Envisage Plug-in 7

3.1.3 Adding Stock Features to an Envisage Application7

3.2 Creating a Feature.........cccocevviiiiniiniiiiccce, 8
3.2.1 Using Object Metadata in a Feature...............ccccceneenins 9

3.2.2 Using “Interfaces” in a Feature..........ccccccceevreinncnnnnne. 10

4 StOCK Features ... nicceiinieteenintnteeessssessssssssssessssssssssesssnes 12
4.1 The Connect Feature..........ccoccoevvruiiviniiiiiiiniiiiiiccccce, 12
4.2 The Drag and Drop Feature..........ccccccoviiniinininniiniinee. 17
421 Dragging Traitsccccooevieeiiiiiiii, 17

4.2.2 Dropping Traits.......ccccevviiiiiiiiiiiiii 18

4.2.3 Feature ICON........ccoovviiiiiiiiii 18

424 Example......iiiiis 19

4.3 The Drop File Feature..........cccocooviviniiinininice, 20
4.3.1 DropFile Objects.......cccccviiviiiniiiiniiiiiciiciiiciens 21

4.3.2 FilePosition ObjJects........ccccevuruevinreiriieninieinieeiereennne. 22

4.3.3 EXample.....cciiiii s 23

4.4 The Options Featurecccccccccuviiniiininciiniiiniicicccce, 24
4.5 The Popup Menu Featurecccccooeriiiniiiin, 25
4.6 The Save State Feature............cccccoovviviiiiiinniniiiiccce, 25
4.7 The Save Feature ..., 26
4.8 The Debug Feature............cccoeviiiiiniiiniiiiiciiiciccicce, 26
4.9 The DockControl Feature............ccccooueiinnniiininniiiiie, 28
4.10 The Custom Feature Featurecccccocvrinicinininincnicnnn 29

27-Dec-06 i

1 What is a DockWindow?

Before we describe what a DockWindowFeature is, let’s begin with
what a DockWindow is. A DockWindow is a combination of a user
interface window and a layout manager that allows a user to
arrange and rearrange the contents of the DockWindow using a
combination of:

e Splitter bars
e Horizontal and vertical drag handles
e Draggable notebook tabs.

Users can change the size of individual DockWindow components
by dragging or clicking on the splitter bars that separate the
components, and reorganize the contents of the window by
dragging notebook tabs or drag handles to other parts of the
DockWindow.

The following two screen shots illustrate a DockWindow in use;
they show different versions of the same Traits Ul demo, which
employs a DockWindow to allow users to organize the various
informational sections of the demo in whatever way is most
convenient for them.

27-Dec-06 1

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

E Traits Ul Demo

20 28 0.192
13 48 0.268

Mike 245 6 4 19
Joe 1 7 26 10

4
3
Tom 219 14|29 3 1 29/ 18 0.283
Dick 158 34 3| 6 3 12 41/0.152
Hamy | 196 4 13) 5 3 10 13 0.158
Dhrk: 204 16 39 12 3 21/ 110.368
Fields 232 41 21 30 22 340198
Strelch 194 24 36 11 4 10 30314
" Descrption | Source | Log
This shows a table editor which has column-specific context menus 3

The demo is a simple baseball scoring system, which lists each player and their
current hatting statistics After a gven player has an at bat, you nght-click on tha tabla
cell corrasponding to the player and tha result of the at-bat (8 g 'S’ = singla) and select
the "Add’ menu ophion to register that the player hit a single and update the player's
overall statistics

This dema also dlustrates the use of Propenty traits, and how using ‘event’ meta-data

can simplify event handling by collapsing an evant that can occur on a number of traits

into a category of event, which can be handled by a single evert handler defined for the
fim dhis samsa dhe il -t

i PP - PRSTIPISPIES PRLEY PR —

W

B Traits Ul De

This shows a3 table editor which has 2] isuebﬂs:nrmueﬂn '
column-specific context menus

The demo is a simple baseball scorng T 1
system, which lists each player and Name | AB S0 S| D T!:me[Ava

their cument batting statistics. After a 22| 37| 17| 0| 17| 2
gmen player has an at bat, you -

nght-click on the table cell sl [B e P L
corespondng ta the player and the Joe 194 7 26 10 3 13 480.268
result of the at-bat (e.g. 'S = single) Tom 219 1429 31 29 180233

and select the ‘Add’ menu option ta =
register that the player hit a single and Bk =8| 343 613 1241101 b

SoUnce LW_

T+ Impozta: -~
‘@ from zandom

3 import randint

4

Sfrom enthought.traits

£ import HasStrictTraits, Sce, Inc, Float, List, Propercy

i)

Sfrom enchought.tzaits.ui \

9 import View, Item, TableEditor
1o

11 from snchought.traics.ui.menu b

12 import Menu, Action, HoButtons

13

18 from snchought.traics.ul.cable column
15 import ObjectColumn ¥

2 27-Dec-06

G ENTHOUGHT What is a DockWindow?

Developers can directly create DockWindows themselves or can
have them automatically created using either the Traits UI toolkit
(enthought.traits.ui) or the Envisage Workbench framework
(enthought.envisage.workbench), two of the major user interface
components of the Enthought Tool Suite (ETS). In particular, using
either of these packages greatly simplifies the process of creating
DockWindow-based applications, which in turn greatly increases
the user configurability of applications, while requiring very little
effort on the part of the developer.

The DockWindow package is a sub-package of PyFace
(enthought.pyface), which provides access to the wxWidgets
library in a way that supports the Model-View-Controller (MVC)
design pattern.

27-Dec-06 3

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

2 Whatis a
DockWindowFeature?

A DockWindowFeature (or feature, for short) is an architectural
extension to the core DockWindow functionality that allows new
capabilities and services to be dynamically added to DockWindows
and to the application components embedded in them. Any
number of unique features can be added to the DockWindows of an
application, and the set of available features can vary from one
application to the next. In addition, an application user is free to
enable or disable any or all of the available features using the
Features sub-menu of the DockWindow shortcut menu.

Visually, a feature typically appears as an icon on a DockWindow
tab or drag bar. The following figure shows a DockWindow tab
containing three icons, corresponding to three features associated
with the DockWindow:

® 5 @ File Browser

il ey
+ @ATI

Each icon provides the user interface for its corresponding feature
and, depending upon how the feature is implemented, might
support any or all of the following user actions:

e Dragging: To act as a source of information.

e Dropping: To act as a receiver of information.
e Clicking: To trigger an action.

e Right-clicking: To display a context menu.

A feature does not add any new capabilities to the DockWindow
component itself. It instead adds new capabilities to the application
components whose views are contained in a DockWindow. These
new capabilities facilitate the implementation and operation of the
application components, as well as providing interesting and
powerful ways for users to create temporary or permanent
information flows and connections between independent
application components. The DockWindows simply act as
intermediaries, providing the framework for embedding features

4 27-Dec-06

G ENTHOUGHT What is a DockWindowFeature?

and application components, as well as the mechanism for
connecting features to the application components they apply to.

The following list describes the stock features that are included
with the DockWindow package. This list indicates some of the
possible capabilities that features can implement, though they are
definitely not limited to this list. The stock features are described in
greater detail in the “Stock Features” section.

e Connect: Enables connecting two application objects by
transferring data from a trait attribute on one object to a trait
attribute on the other object.

e Drag and Drop: Enables dragging and dropping of application
objects onto other application objects, with the receiver object
taking appropriate action.

e Drop File: Enables dragging and dropping of specific file types.

e Options: Enables the user to customize preferences on an
application object.

e Popup Menu: Enables displaying a context menu for an
application object.

e Save State: Enables automatic saving and restoring of the state
of an application object.

e Save: Provides a visual indication of when an application
object’s state is not saved, as well as a mechanism for saving it.

e Debug: Enables a user (typically the application developer) to
visualize and debug the internal state of an application object.

e DockControl: Enables an application object to access the
DockControl object in which its view is displayed.

e Custom Feature: Enables creating a feature that is specific to a
particular application object.

27-Dec-06 5

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

3 Using DockWindowFeatures

You can use DockWindowFeature capabilities in various ways:

e Add stock features to your application.
e Create your own feature, and then add it to your application.

3.1 Adding a Feature

There are two different ways to integrate a DockWindowFeature
subclass into a DockWindows-based application, depending upon
whether or not the application is using the Envisage Workbench
plug-in.

3.1.1 Adding a Feature using the
DockWindow API

If the application does not use the Envisage Workbench plug-in,
then the feature can be added directly by calling the
enthought.pyface.dock.api.add_feature function, which has the
signature:

add_feature(feature_class)

The parameter feature_class is the DockWindowFeature subclass to
be added to DockWindows in the application. This function returns
True if the class is installed successfully and False if it was
previously installed.

In the case where the class is installed successfully, and the class’s
state variable is initially O (uninstalled), the value is changed to 1
(active) to indicate that the feature is now active and can be applied
to application components.

If the initial value of the class’s state variable is 2 (disabled), then
the value is not changed, and the class is left in the disabled state.
In this case, the user must explicitly enable the feature using the
DockWindow Feature shortcut sub-menu.

6 27-Dec-06

G ENTHOUGHT Using DockWindowFeatures

3.1.2 Adding a Feature as an Envisage
Plug-in

If the application uses the Envisage Workbench plug-in, then the
feature can be added by including an enthought.envisage.
workbench.workbench_plugin_definition.Feature extension point
in one of the application’s plug-in definition files. The format of the
Feature extension point is:

Feature(class name = class _name)

The class_name parameter is the name of the DockWindowFeature
subclass to be added.

3.1.3 Adding Stock Features to an Envisage
Application

All of the features in the enthought.pyface.dock.features package
can be added to any Envisage-based application by including the
enthought.developer.plugin_definition.py file in your
application’s plug-in definitions file. Adding this file includes also
all of the developer tool plug-ins contained in the
enthought.developer.tools package.

However, if you want to include only a subset of the available
features in your application, you can do so by cutting and pasting
one or more of the following Envisage extension point definitions
into one of your plug-in definition files:

Necessary imports:

from \

enthought.envisage .workbench.workbench_plugin_definition \
import Feature

Add the features you need from the following list to the
"extension_points®" section of an Envisage
plugin_definition.py

Tile:

Connect feature:

Feature(class _name =
"enthought.pyface.dock. features.connect_feature."
"ConnectFeature®)

27-Dec-06 7

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

Drag and Drop feature:

Feature(class_name =
"enthought.pyface.dock. features.drag_drop_feature.”
"DragDropFeature”)

Drop File feature:

Feature(class_name =
"enthought.pyface.dock. features.drop_file feature."
"DropFileFeature”)

Options feature:

Feature(class_name =
"enthought.pyface.dock. features.options_feature. "
"OptionsFeature®)

Popup menu feature:

Feature(class _name =
"enthought.pyface.dock. features.popup_menu_feature.”
"PopupMenuFeature®)

Save State feature:

Feature(class _hame =
"enthought.pyface.dock. features.save_state feature."
"SaveStateFeature®)

Save feature:

Feature(class _name =
"enthought.pyface.dock. features.save_feature.*
"SaveFeature®)

Debug feature:

Feature(class _name =
"enthought.pyface.dock. features.debug feature."
"DebugFeature®)

DockControl feature:

Feature(class_name =
"enthought.pyface.dock. features.dock_control_feature.*
"DockControlFeature”®)

Custom Feature feature:

Feature(class_name =
"enthought.pyface.dock. features.custom feature."
"ACustomFeature®)

3.2 Creating a Feature

Creating a new feature is a matter of creating a subclass of
DockWindowFeature. The DockWindowFeature class defines the
core methods and trait attributes that DockWindows use to
determine which features apply to which application components,

8 27-Dec-06

G ENTHOUGHT Using DockWindowFeatures

and to notify features when key application and user interface
events occur. These items are described in detail in the API
documentation for enthought.pyface.dock.feature. The following
items are designed to be overridden:

e feature_name class variable
e tab_image trait attribute

e bar_image trait attribute

e tooltip trait attribute

o left click method

e right_click method

e drag method

e control_drag method

e shift_drag method

e alt_drag method

e can_drop method

e drop method

e dispose method

e feature_for class method

e is_feature_for class method
e new_feature class method

There is no single correct way to create a new feature. The
DockWindowFeature API is open-ended, which allows for creating
many new and interesting interfaces. However, two introspection
techniques have proven useful in creating a number of feature and
application object classes: metadata and interfaces.

3.2.1 Using Object Metadata in a Feature

The feature_for() and is_feature_for() class methods can be the key
to writing a useful feature. They provide an opportunity to
examine an application object to determine whether the feature
applies to it. The standard Python isinstance() function and the
Traits metadata query methods (such as trait_names()) can be very
useful for this task. In fact, many of the stock features are defined in
terms of specific Traits metadata patterns that application object
classes must follow in order to use a particular feature.

Using metadata has the following advantages:

27-Dec-06 9

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

e It does not require the application object class to inherit from a
special base class (other than HasTraits) or to implement
particular interfaces or protocols.

e The supplied metadata is often orthogonal to the class
implementation. That is, the metadata is usually descriptive
information attached to certain traits in the application object
class that allows the feature to discover its applicability to the
class and to retrieve information about how the feature should
interact with the class. In general, removing the metadata does
not alter the operation of the class in any way.

Related to the use of metadata is the importance of defining
appropriate traits to attach the metadata to. Defining a trait with
metadata is a way to implement, in essence, a protocol for
interacting with the object that can be easily discovered by a
feature. The feature can use the metadata to determine when and
how it should read data from or write data to the application
object’s trait attribute. The application object class in turn can
define a trait notification handler to process data assigned to the
trait attribute, either by the feature or another application object
attached to the trait attribute by the feature or some other means.

This pattern of defining feature-specific metadata and attaching it
to the s of various application object classes is one that is used
repeatedly in the stock features. You are encouraged to browse the
source code for the various features defined in the
enthought.pyface.dock.features package to see some complete
examples of features that use these patterns. Likewise, you might
also look at some of the application object classes in the
enthought.developer.tools package for examples of tools that
enable various features by following the traits-with-metadata
design pattern.

3.2.2 Using “Interfaces” in a Feature

Another useful approach that can be used when defining new
feature classes is to look for application object classes that
implement specific interfaces supported by the feature. The term
interface is used somewhat loosely here to refer to either a specific
class the application object inherits from, or a specific set of
methods that the application object class implements. This

10 27-Dec-06

G ENTHOUGHT Using DockWindowFeatures

approach can easily be combined with metadata, for example to
allow the feature to discover application object trait attributes that
contain instances of objects which implement a feature-specific
interface.

27-Dec-06 11

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

4 Stock Features

In addition to the core DockWindowFeature base class, there are a
number of features that have already been implemented and are
included in the enthought.pyface.dock.features package. These
features can be used freely in any DockWindows-based application,
and also provide useful working examples of how to write feature
classes.

These features are also used heavily by the developer oriented
plug-ins provided in the enthought.developer.tools package. Refer
to the Enthought Developer Tools Suite documentation for a
description of these plug-ins, and to the source files contained in
the enthought.developer.tools package for examples of how to
integrate feature functionality into tools and application
components.

The following sections provide in-depth descriptions of the
function provided by each of these DockWindowFeature classes.

4.1 The Connect Feature

The Connect feature allows a user to create an information flow
between two application objects by connecting data supplied by
one object to the other. The connections made can be either
temporary or permanent. In a temporary connection, the data is
transferred just once, while in a permanent connection, once the
connection is made, the application objects stay connected until the
user explicitly disconnects them. The feature applies to any
application object which derives from HasTraits and that has one
or more traits with connect metadata.

The connect metadata has the format: connect = wvalue, where
value is a string with one of the following forms:

{to] from|both}[:name]
{to]| from|both}[::type]

12 27-Dec-06

G ENTHOUGHT Stock Features

In both these forms, one of the strings to, from or both must be
specified and may optionally be followed by colon and a name or a
double colon and a type.

The to, from and both strings specify the allowed direction of
data transfer when another application object is connected to the
object’s trait attribute:

e to: Data may be copied from the other application object to this
trait attribute.

e from: Data may be copied from this trait attribute to the other
application object.

e both: Data may be copied from either this trait attribute or the
other application object to the other.

If specified, the name string provides text that will appear in the
Connect feature’s shortcut menu to describe the trait being
connected (e.g., current file). If not specified, a generic term to
describe the connection is used instead.

The type string, if specified, performs the same function but, in
addition, requires that both ends of the connection provide the
same type string in order for a connection to be made between
them (e.g.,, employee information). Note that the fype string
does not need to correspond to an actual Python type. It ensures
that both ends of a connection use the data for the same logical
purpose.

The following are all legal values for connect metadata:

to

from

both

to:Ffile name

from: zemployee information

The user interface for the Connect feature is one of the following
icons, which appear on the tab associated with application object:

e «: The application object is not connected to any other object.
e - The application object is connected to at least one other

object.

The user can interact with the Connect feature as follows:

27-Dec-06 13

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

e Drag: Drag the Connect feature icon from one application object
and drop it on the Connect feature icon for another application
object. If the connection can be made, the user sees the valid
drop target cursor while holding the pointer over the target
icon. If no connection can be made, or there is more than one
possible connection, the invalid drop target cursor is displayed.
If the connection is valid, the feature automatically connects the
two application objects when the user releases the mouse button
over the drop target.

e Left click: Left clicking the Connect feature icon displays a
shortcut menu showing the valid connections that can be made
to other application objects, and the current connections, if any,
that can be disconnected. Selecting a menu option will make or
break the specified connection. An example of a typical shortcut
menu is shown below:

to the selected file position in the File Browser

Disconnect » to the Universal Inspector

Internally, when a connection is made between two application
object trait attributes, the feature creates a trait change notification
listener that is called when the from object trait attribute changes
value. When called, the listener attempts to assign the new from
trait value to the to trait attribute. If an exception occurs, the error is
ignored.

Note that before a connection is made, the Connect feature always
tries to ensure that the fo trait is type-compatible with the from trait
by validating that the current value of the from trait is a valid value
for the to trait. This does not guarantee that all future from trait
values will be valid for the to trait, but it does prevent many
incompatible assignments from being made or listed in the shortcut
menu.

Any connection made by the user is immediately persisted so that
in future application sessions, the connection can be automatically
restored as soon as both ends of the connection have been loaded.
Similarly, when the user disconnects an existing connection, the
connection is immediately removed from set of persisted
connections, so that the connection is not automatically restored in
future application sessions.

14 27-Dec-06

G ENTHOUGHT Stock Features

Connecting two application objects also causes them to be treated
as if they form a new compound tool or application. Specifically,
this means that if each object is contained in a separated notebook
within the containing DockWindow, clicking the tab of one
application object to activate it automatically activates the tab of the
other object.

The following code provides a simple example of two application
object classes that can be connected together. The first class,
InputNumber, contains a value trait attribute that the user can type
an integer value into. The value trait attribute allows connections as
a from trait. The second class, ConvertNumber, displays the textual
representation of an integer value. Its number trait attribute
contains the integer to be converted and allows connections as a fo
trait:

from enthought.traits.api \
import HasTraits, Int, Str, View, ltem

Define the InputNumber class:
class InputNumber (HasTraits):

Define the input value:
value = Int(connect = "from:the integer value®)

Define the application object view:
traits_view = View("value®)

Define the ConvertNumber class:
class ConvertNumber (HasTraits):

Define the number and converted value traits:
number = Int(connect = "to:the integer value®)
text = Str

Define the application object view:
traits_view = View(Item(“text", style="readonly”))

Handle the "number® trait being changed:
def _number_changed (self, number):
self._text = self._convert(number)

Convert an integer to its text representation:
def _convert (self, n):

if n==0:

return "zero"

result = **
ifn<O:

result = "minus

n = -n

27-Dec-06 15

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

if n >= 1000000000:
result += \
self._convert(n/1000000000) + * billion ~
n %= 1000000000
if n >= 1000000:
result += \
self._convert(n / 1000000) + * million *©
n %= 1000000
if n >= 1000:
result += \
self. convert(n / 1000) + * thousand *
n %= 1000
if n >= 100:
result += \
self._convert(n /7 100) + * hundred *
n %= 100
if n >= 20:
result += tens[(n /7 10) - 2]
n %= 10
if n>0:
result += "-*
ifn> 0:
result += digits[n]
return result.strip(Q)

List of multiples of ten names:
tens = ["twenty”", “thirty", “forty", "fifty",
"sixty", "seventy", “eighty", "ninety"]

List of digit names:

igits = ["zero", "one", “"two", “three", “four®, "five-,
"six", "seven®, "eight", "nine", “"ten-,
"eleven®, "twelve®, "thirteen®, "fourteen-,
"fifteeen", "sixteen", "seventeen", "eighteen”,
"nineteen”]

Create importable application objects:
input_number = InputNumber()
convert_number = ConvertNumber()

The following screen shot shows the two application object views
before being connected together:

s Input Mumber s Convert Number

Value: |2653 11 Text:

The next screen shot shows the same two views after connecting
them by dragging the #¥ icon from the Input Number application
object to the same icon on the Convert Number object:

16 27-Dec-06

G ENTHOUGHT Stock Features

=& Input Mumber =& Convert Mumber
Value: |265311 Text: two hundred sixty-five thousand three hundred eleven

4.2 The Drag and Drop Feature

The Drag and Drop feature provides a mechanism that allows a
user to drag and drop objects to or from an associated application
object. The receiver of the dragged object can then take whatever
action is appropriate both for the receiver and the object received.
The feature applies to any application object that derives from
HasTraits and which has a least one trait with draggable or
droppable metadata.

4.2.1 Dragging Traits

An application object trait is draggable if it has draggable =
value metadata set on it. The value can be any value other than
None, but normally it is a string that is used as a tooltip to describe
the object that will be dragged (e.g., draggable = "Drag this
document?®). The dragged object is the current value of the trait
attribute at the time the user initiates the drag operation by clicking
and dragging the Drag and Drop feature icon.

Note that it is valid for an object to have more than one trait with
draggable metadata. In this case, when the user begins a drag
operation, the feature makes a list of the values of all of the traits
whose draggable metadata is not None, and determines the final
dragged value based on the length of the resulting list:

e If the length is 0, the application object is not draggable.

e If the length is 1, the single value in the list becomes the
dragged value.

o If the length is greater than 1, the dragged value is an
enthought.pyface.dock.features.api.MultiDragDrop instance
that contains each of the draggable items in the list. The
MultiDragDrop object is discussed further in the section on
dropping objects.

27-Dec-06 17

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

4.2.2 Dropping Traits

Similarly, an application object trait is droppable if it has
droppable = value metadata set on it. Again, the value can be
anything other than None and normally it is a string describing
what type of object can be dropped (e.g., droppable = "Drop a
document here*®).

The action taken when an object is dropped on the application
object’s Drag and Drop feature icon depends upon the type of the
object dropped:

e If the object is an
enthought.pyface.dock.features.api.MultiDragDrop instance,
then the feature attempts to assign each draggable object
contained in the MultiDragDrop object to each droppable trait
in the application object.

e If the object is not a MultiDragDrop instance, the feature
attempts to assign the object to each droppable trait in the
application object.

Any error caused by attempting to assign an incompatible value to
a trait attribute is ignored. Note that the feature allow a drop
operation to occur only if at least one of the draggable values is
compatible with at least one of the application object’s droppable
traits.

It is perfectly valid to set both draggable and droppable metadata
on the same trait. In this case, obviously, the trait is both draggable
and droppable.

4.2.3 Feature Icon

The Drag and Drop feature icon that is displayed depend on the
combination of draggable and droppable metadata present in the
application object:

e ©: The object contains both draggable and droppable metadata.
e ®: The object only contains draggable metadata.
¢ O: The object only contains droppable metadata.

18 27-Dec-06

G ENTHOUGHT Stock Features

4.2.4 Example

The following is a simple example of an application object that has
a droppable trait. The trait accepts any type of data and the
application object simply displays the string value of the object that
was dropped on it most recently:

from enthought.traits.api \
import HasTraits, Any, Str, View, ltem

class DroppedObjectValue (HasTraits):

Holds the most recently dropped object:
object = Any(droppable="Drop any object here to see *
"its value®)

Contains string value of the most recently dropped
object:
value=Str("Drop an object on me to display its value®)

traits_view = View(
Item("value®,
style
show_label

"readonly”,
False

)

Handle a new object being dropped:
def _object changed (self, object):
self.value = str(object)

Create an importable application object:
dropped_object _value = DroppedObjectValue()

The following is a screen shot of the application object after having
dragged a file name from a file explorer-type view and dropping it
on the Drag and Drop feature icon:

27-Dec-06 19

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

© Object value

c:\Python 24\ INSTALL.LOG

4.3 The Drop File Feature

The Drop File feature is similar to the Drag and Drop feature, but it
is specialized to handle the case of dragging and dropping files and
tile-related information. The feature applies to any application
object that derives from HasTraits and has exactly one trait with
drop_file metadata.

The format of the drop_file metadata is: drop_file = wvalue,
where value can be:

e True: Indicates that the trait accepts any type of file.

e A string: Indicates that the trait accepts any type of file whose
file extension is the specified string (e.g., "py").

e A list or tuple of strings: Indicates that the trait accepts any type
of file whose file extension matches one of the strings in the
specified list or tuple (e.g., ["py", "pyc”, "pyo~"]).

¢ An enthought.pyface.dock.features.api.DropFile object:
Indicates that the trait accepts any type of file which matches
the files described by the DropFile object. See the “DropFile
Objects” section for details.

The trait containing the drop_file metadata can be declared to
accept any of the following types of data:

e Str or File: Accepts a single string file name.

e List(Str) or List(File): Accepts a list of string file names.

¢ Instance(FilePosition): Accepts a single FilePosition object,
which is an extended file description including optional line
number, column, and range information. See the “FilePosition
Objects” section for details.

e List(FilePosition): Accepts a list of FilePosition objects.

The Drop File feature automatically converts any type of file name
or FilePosition data dropped on it to a format acceptable to the

20 27-Dec-06

G ENTHOUGHT Stock Features

associated application object trait as long as all dropped files match
the file extension filter, if any, specified in the drop_file metadata.

For example, if the trait is declared to be a Str that accepts only a
single file name, and the user drops a list of FilePosition objects on
the Drop File feature icon, the feature extracts the file names from
each FilePosition object and assigns them, one by one, to the
application object trait. While this might not seem intuitively
correct, in practice it often works quite well, because the
application object usually has a trait change event handler
associated with the trait that fires each time a new file name is
assigned to it, thus allowing it to process each assigned file.

Similarly, if the trait is defined to be a list of FilePosition objects,
and the user drops a single file name on the application object’s
Drop File feature icon, the feature automatically creates a list
containing a single FilePosition object referencing the dropped file
name, and assigns the list to the application object trait.

4.3.1 DropFile Objects

A DropFile object can be used as the value of the drop_file
metadata for an application object trait. The DropFile object
provides an extended description of the types of files that the
feature should accept, and has the following traits:

List of valid droppable file extensions:
extensions = List(Str)

Is the trait also draggable?
draggable = false

The tooltip to use for the feature:
tooltip = Str

Setting the DropFile draggable trait to True allows the current
value of the application object trait to be used as a drag source if
the user attempts to drag the Drop File feature icon. If it is set to
False, or the drop_file metadata is not a DropFile object, file
dragging is not supported. The draggable trait also affects how the
Drop File feature icon is displayed:

27-Dec-06 21

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

e [#: draggable == True
e L1:draggable == False, or no DropFile metadata.

The DropkFile tooltip trait lets you specify a tooltip string
describing the files that can be dragged or dropped. If left empty,
or if the drop_file metadata is not a DropFile object, a default
tooltip is created automatically by the feature and is used instead.

4.3.2 FilePosition Objects

A FilePosition object is an extended form of file description that
includes more than just a file name. The complete set of traits
defined on a FilePosition object is as follows:

The name of the file:
Ffile_name = File

The logical name of the file fragment:
name = Property

The line number within the file:
line = Int

The number of lines within the file (starting at "line").
A value of -1 means the entire file:
lines = Int(-1)

The column number within the line:
column = Int

An object associated with this file:
object = Any

The name trait is a property that returns either a logical name that
has been assigned to it, or the base name (i.e., file name minus path)
of the file_name trait if no value has been explicitly assigned to
name.

The line, lines, and column traits define a range or position in the
tile, depending upon how they are used. For example, to define a
range of lines, the line and lines trait are usually set. To definition a
position, the line and column, or just the line trait, are set.

Finally, an arbitrary object can be associated with a FilePosition.

22 27-Dec-06

G ENTHOUGHT Stock Features

The FilePosition object is used by a number of the feature-based
plug-ins defined in the enthought.developer.tools package. Refer
to the source code for these plug-ins for examples of how
FilePosition objects can be used.

4.3.3 Example

The following example shows a simple application object that uses
the Drop File feature to display a tabular view of the FilePosition
information dropped on it:

from enthought.traits.api \
import HasTraits, List, View, ltem, TableEditor

from enthought.traits.ui.table_column \
import ObjectColumn

from enthought.developer.api \
import FilePosition

Define a read-only table column:
class ReadOnlyColumn (ObjectColumn):
editable = False

The table editor for displaying the FilePosition columns:
files_table_editor = TableEditor(

columns = [ReadOnlyColumn(name

ReadOnlyColumn(name

ReadOnlyColumn(name

ReadOnlyColumn(name

ReadOnlyColumn(name

*file_name®),
"name”),
"line®),
*column®),
"lines”) 1]

)

Define the application object class:
class FileDropper (HasTraits):

The list of files being displayed:
files = List(FilePosition, drop_Ffile = True)

The table view for displaying them:
traits_view = View(
Item("files",
show_label
editor

False,
files_table_editor

))

Create an importable application object:
file_dropper = FileDropper()

27-Dec-06 23

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

The following is a screen shot of the application object after
selecting all of the Python source files in the
enthought.pyface.dock.features package from Windows Explorer
and dragging them onto the Drop File feature icon:

7 File Information

| 63

File name Mame IJn-a| Column | Lines

I'_I -.5'.12rl:-nt'-.en‘.huu-;l'ur'-zr-:".l|I:|'-Er11|'u:u-;|'|'.'fE'-.a:u:l-:"fE-alurEE.'.l:-:lnr:-E--:I: feature. py W
C\swnroot\enthought'src\Bblenthought\pyface'\dock\features\custom_feature py custom_feature. py 0 0 -1
C:\swnrootienthoughtisrclib\enthought\pyface\dock'eaturesidebug_feature py debug_feature py 0 0 -1
Cgwroot\enthoughtsrc\iblenthought\pyface\dock\features'dock_control_feature.py dock_control_feature.py 0 0 -1
C:\swmrootienthoughtisrcilib\enthought\pyface\dock features'drag_drop_feature.py drag_drop_featurepy 0 0 -1
Chswroot'enthought\srcliblenthought\pyface\dock'features'drop_file_feature py drop_file_feature. py] 0 -1
Cswwoot\enthought\src\Bblenthought\pyface\dock\features\eature_metadata py feature_metadata py 0 0 4
Cgvwrootienthoughtsrcliblenthought\pyface\dock\features\options_feature. py options_feature.py 0 0 -1
Cswroot\enthought\sreliblanthought\pyface\deck eatures\popup_menu_feature py popup_menu_feature py 0 0 -1
Cohswmroot\enthoughtisrc\ibenthought\pyface\dock'\features'save _feature py save_feature py 0 0 -1
Chswrootienthought\sreliblanthought\pyface\dock features\save state feature py save state featurepy 0] -1
C:\swroot'enthought\sroiiblenthought\pyface\dockfeaturest_imit__py __imit__py o 0 -1
CAswroot\enthought'sreblenthought\pyface\dock featuresiapi py api.py 0 0 -1

4.4 The Options Feature

The Options feature provides a simple mechanism for an
application object to allow a user to set the object’s options (i.e.,
user preferences). The feature applies to any application object that
derives from HasTraits and has a traits view called options.

If the feature applies to an application object, the Options feature
icon () is displayed on the application object’s tab or drag bar.
When the user clicks the icon, the application object’s options
view is displayed so that the user can set the desired user
preference options.

This feature can be combined with the Save State feature to
automatically save and restore the user preference traits of an
application object.

24 27-Dec-06

G ENTHOUGHT Stock Features

4.5 The Popup Menu Feature

The Popup Menu feature provides a simple mechanism for an
application object to display a shortcut menu of actions specific to
the object. The feature applies to any application object that has an
attribute called popup_menu.

If the feature applies to an application object, the Popup Menu
feature icon (=) is displayed on the application object’s tab or drag
bar. When the user clicks the icon, the shortcut menu defined by
the application object’s popup_menu attribute is displayed. The
value of popup_menu can be either an
enthought.traits.ui.menu.Menu object or a callable that, when
invoked with no arguments, returns a Menu object. The popup
menu is normally displayed so that the topmost menu item lies
under the position that the mouse pointer had at the time the user
clicked on the Popup Menu feature icon.

4.6 The Save State Feature

The Save State feature automatically manages saving and restoring
the state of its associated application object. This feature does not
interact directly with the user, so it has no visible icon. The feature
applies to any application object which has at least one trait with
save state = True metadata.

Any application object trait with save_state = True metadata
is automatically restored (if saved data exists for it) when the
feature is first applied, and is immediately saved by the feature
each time the trait value is changed. All of an application object’s
saved trait values are stored under the ID specified by the
application object trait with metadata save_state_id = True.
This trait must be a (usually constant) string value (e.g.,
enthought.developer.tools.syntax_checker.state). If
no such trait exists, a default ID is used instead that has the form:
unknown . plugins.dock_control . state, where dock_control is the
name of the feature’s associated DockControl object.

Although it is not mandatory, specifying a save_state_id of the
form: package_name.module_name.class_name.state is

27-Dec-06 25

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

recommended, to help avoid the possibility of one application
object overwriting a different application object’s saved state data.
Specifying the class name is necessary only if the specified module
contains more than one application object class with save_state
= True metadata.

The Save State feature can be used in conjunction with the Options
feature to automatically save and restore an application object’s
user preferences.

4.7 The Save Feature

The Save feature provides a simple mechanism for an application
object to notify the user when it has modifications that have not yet
been saved, as well as providing a way for the user to request that
all current changes be saved. The feature applies to any application
object that inherits from the enthought.developer.api.Saveable
interface.

If the feature applies to an application object, the feature displays
its Save feature icon (), but only when the application object’s
needs_save trait is set to True. When the user clicks the icon, the
Save feature calls the application object’s save() method to save the
application object’s unsaved data.

It is the application object’s responsibility to set the needs_save
trait to True whenever the user modifies any application data that
needs to be saved. It is also the application object’s responsibility to
set the needs_save trait to False once its save() method has
successfully saved the modified user data.

4.8 The Debug Feature

The Debug feature is intended to help developers debug
application components by providing dynamic access to various
application objects while the application is running. The feature
applies to any DockWindow component that has an associated
application object (i.e., whose dock_control.object trait is not
None).

26 27-Dec-06

G ENTHOUGHT Stock Features

This feature is never enabled by default (i.e., its state class variable
is initialized to 2, for “disabled”). In order to use the Debug feature,
the user (i.e., developer) must explicitly enable the feature.

1. Right-click any DockWindow tab or drag bar.

2. On the shortcut menu that appears, point to Feature and click
Debug.

This default behavior prevents the Debug icon from cluttering the
user interface until the developer needs it. After the Debug feature
is enabled, the Debug icon () appears on every application
component tab or drag bar that has an associated application object.

NOTE:

If you see a tab or drag bar without the debug icon, it
probably does not use envisage.workbench.api.
TraitsUIView. You might consider to sending an e-mail
message to the developer of the component and gently
suggesting converting the plug-in.

By default, the Debug feature provides access to the application
object associated with the application component. But it can also
provide access to several other useful objects as well. The complete
set of available objects is as follows:

®:Application object
#: DockControl object
#: Window object

#®: Traits Ul object

To choose the current object, right-click the Debug icon and
selecting the appropriate object type on the shortcut menu:

v Ohject
DockControl
Window
Traits LI

The Debug icon immediately changes color to reflect the current
object it is connected to.

You can view or interact with the selected object in several ways:

27-Dec-06 27

The DockWindowFeature Feature of DockWindows c ENTHOUGHT

e Left click: Displays a window containing a tree-view of the
currently selected object, like the one shown in the following
figure:

/M Object Inspector

SR AppMonitor (0x02733540)
+ L'.F'g .dodk_control: DodkControl{0x027339C0)
+ L'.F'g feature: CustomFeature(0x02739530)

O .id: ‘dmorrill. plugins.app_monitor . state' [34]
|- .objects: List(2)
+-[4 [0]: FileBrowser (0x02624BA0)
+- [[1]: Application(Dx022C28D0)
- L'.F'g wview_object: AppTreeView(Dx02753840)
- .objects: List(2)
+ [[0]: FileBrowser{Dx02624BA0)
+-[i [1]: Application{0x022C2800)
O .view_style: Tree' [4]

e Right-click: Displays the object selection menu described above.

e Drag: Dragging the Debug icon is the same as dragging the
currently selected object. The action taken depends on the target
it is dropped on.

e Control-drag: This is a shortcut for dragging the associated
application object without first selecting it from the context
menu.

e Shift-drag: This is a shortcut for dragging the associated
DockControl object without first selecting it from the context
menu.

e Alt-drag: This is a shortcut for dragging the associated window
object without first selecting it from the context menu.

4.9 The DockControl Feature

The DockControl feature provides a mechanism for an application
object to access to its associated DockControl object. The feature
applies to any application object that derives from HasTraits and
has at least one trait that has dock_control = True metadata.

If the feature applies to an application object, the feature attempts
to set all application object trait attributes containing
dock_control = True metadata to the DockControl object

28 27-Dec-06

G ENTHOUGHT Stock Features

associated with the application object. Declare such traits to be of
type Instance(DockControl) or Any. Any exception raised by
attempting to assign the DockControl object to a trait attribute is
ignored.

Because the feature does not require any user interaction, it does
not have an icon associated with it.

4.10 The Custom Feature Feature

All of the stock features provide functionality that can be useful in
a wide variety of application objects. But sometimes you might
need to create a feature that is very specific to an application and
applies to a single application component or object.

In these cases, the Custom Feature feature is very convenient to
use. It allows you to embed the complete implementation of a
feature’s functionality directly in an application object’s class
definition, without having to write a separate
DockWindowFeature subclass.

The Custom Feature feature applies to any application object that
derives from HasTraits, that contains one or more traits with
custom_feature metadata, and whose corresponding trait value is
an enthought.pyface.dock.features.api.CustomFeature object, or a
list of such objects. The actual value of the custom_feature
metadata is unimportant, and can be any value as long as it is not
None (e.g., custom_feature = True).

The Custom Feature feature works as follows:

1. It verifies that a new application component has an associated
application object that derives from HasTraits and contains at
least one trait containing the appropriate custom_feature
metadata, as described above.

2. For each trait with the custom_feature metadata, it retrieves the
corresponding trait value and verifies that it is an instance of
CustomFeature or a list of such instances.

27-Dec-06 29

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

3.

For each such CustomFeature object found, it creates an
ACustomFeature object (derived from DockWindowFeature)
that references the application object’s CustomFeature object
and delegates all of the feature protocol operations through it.
This is what allows each ACustomFeature object to have totally
unique and custom behavior.

Note that the CustomFeature objects that the application object
provides are completely descriptive in nature. In fact, the complete
definition of the CustomFeature class is as follows:

class CustomFeature (HasPrivateTraits):

The current image to display on the DockControl tab:
tab_image = Instance(ImageResource)

The current (optional) image to display on the
DockControl drag bar:
bar_image = Instance(ImageResource)

The tooltip to display when the mouse is hovering
over the 1image:
tooltip = Str

Is the feature currently enabled?
enabled = true

Name of the method to invoke on a left click:
left click = Str

Name of the method to invoke on a right click:
right_click = Str

Name of the method to invoke when the user starts to
drag:
drag = Str

Name of the method to invoke when the user starts to
ctrl-drag:
control_drag = Str

Name of the method to invoke when the user starts to
shift-drag:
shift_drag = Str

Name of the method to invoke when the user starts to
alt-drag:
alt drag = Str

Name of the method to invoke when the user drops an
object:
drop = Str

30

27-Dec-06

G ENTHOUGHT Stock Features

Name of the method to invoke to see if the user can
drop an object:
can_drop = Str

The CustomFeature class definition closely parallels the
DockWindowFeature class, but it substitutes method name strings
for actual methods. The method names must be the names of
methods defined on the application object class containing the
CustomPFeature.

The ACustomFeature object that is created to reference the
CustomFeature object automatically delegates all aspects of the
DockWindowFeature protocol to the corresponding item in its
CustomFeature object.

Note that it is not necessary to initialize all of the CustomFeature
traits. For example, letting the drag trait default to the empty string
means that the CustomFeature does not support dragging its
feature icon.

Any of a CustomFeature object’s traits can be modified
dynamically. For instance, assigning a new ImageResource object
to a CustomFeature object’s tab_image trait automatically results
in the corresponding feature icon being updated on the application
object’s tab.

The following code sample provides a simple example that shows
how an application object class can use the Custom Feature feature
to implement application specific features. In this example the
Counter application object class defines two custom features, called
IncrementFeature and DecrementFeature. Clicking the
IncrementFeature icon (if) increments the object’s count trait
attribute, while clicking the DecrementFeature icon (¥#) decrements
the count. The application object itself simply displays the current
value of the count trait attribute.

from enthought.traits.api \
import HasTraits, Int, List, View, ltem

from enthought.pyface.image_resource \
import ImageResource

from enthought.pyface.dock.features.api \
import CustomFeature

IncrementFeature = CustomFeature(

27-Dec-06 31

The DockWindowFeature Feature of DockWindows G ENTHOUGHT

tab_image = ImageResource("increment®),
tooltip = "Click to increment count”,
left _click = "increment”

)

DecrementFeature = CustomFeature(

tab_image = ImageResource(“decrement”),
tooltip = "Click to decrement count”®,
left_click = “decrement”

)

class Counter (HasTraits):

The current count value:
count = Int

The feature definitions:
features = List([IncrementFeature, DecrementFeature],
custom_feature = True)

The application object view:
traits_view = View(

Item("count®, style = "readonly®)
)

Methods to handle "feature® left click actions:
def increment (self):
self.count += 1

def decrement (self):
self_count -= 1

Create an importable instance:
counter = Counter()

The following screen shot shows the Counter application object
after clicking on the IncrementFeature icon a few times:

4 ¥ Counter

Count: 5

32 27-Dec-06

	The DockWindowFeature Feature of DockWindows
	1 What is a DockWindow?
	2 What is a DockWindowFeature?
	3 Using DockWindowFeatures
	3.1 Adding a Feature
	3.1.1 Adding a Feature using the DockWindow API
	3.1.2 Adding a Feature as an Envisage Plug-in
	3.1.3 Adding Stock Features to an Envisage Application

	3.2 Creating a Feature
	3.2.1 Using Object Metadata in a Feature
	3.2.2 Using “Interfaces” in a Feature

	4 Stock Features
	4.1 The Connect Feature
	4.2 The Drag and Drop Feature
	4.2.1 Dragging Traits
	4.2.2 Dropping Traits
	4.2.3 Feature Icon
	4.2.4 Example

	4.3 The Drop File Feature
	4.3.1 DropFile Objects
	4.3.2 FilePosition Objects
	4.3.3 Example

	4.4 The Options Feature
	4.5 The Popup Menu Feature
	4.6 The Save State Feature
	4.7 The Save Feature
	4.8 The Debug Feature
	4.9 The DockControl Feature
	4.10 The Custom Feature Feature

