File: _topological_sort.py

package info (click to toggle)
python-pyface 8.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,944 kB
  • sloc: python: 54,107; makefile: 82
file content (102 lines) | stat: -rw-r--r-- 3,674 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# (C) Copyright 2005-2023 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!

from collections import OrderedDict, defaultdict
import logging

# Logging.
logger = logging.getLogger(__name__)


def before_after_sort(items):
    """ Sort a sequence of items with 'before', 'after', and 'id' attributes.

    The sort is topological. If an item does not specify a 'before' or 'after',
    it is placed after the preceding item.

    If a cycle is found in the dependencies, a warning is logged and the order
    of the items is undefined.
    """
    # Handle a degenerate case for which the logic below will fail (because
    # prev_item will not be set).
    if len(items) < 2:
        return items

    # Build a set of pairs representing the graph.
    item_map = dict((item.id, item) for item in items if item.id)
    pairs = []
    prev_item = None
    for item in items:
        # Attempt to use 'before' and 'after' to make pairs.
        new_pairs = []
        if hasattr(item, "before") and item.before:
            parent, child = item, item_map.get(item.before)
            if child:
                new_pairs.append((parent, child))
        if hasattr(item, "after") and item.after:
            parent, child = item_map.get(item.after), item
            if parent:
                new_pairs.append((parent, child))

        # If we have any pairs, use them. Otherwise, use the previous unmatched
        # item as a parent, if possible.
        if new_pairs:
            pairs.extend(new_pairs)
        else:
            if prev_item:
                pairs.append((prev_item, item))
            prev_item = item

    # Now perform the actual sort.
    result, has_cycle = topological_sort(pairs)
    if has_cycle:
        logger.warning("Cycle in before/after sort for items %r", items)
    return result


def topological_sort(pairs):
    """ Topologically sort a list of (parent, child) pairs.

    Returns a tuple containing the list of elements sorted in dependency order
    (parent to child order), if possible, and a boolean indicating whether the
    graph contains cycles.

    A simple algorithm due to Kahn, in which vertices are chosen from the graph
    in the same order as the eventual topological sort, is used.

    Note that this implementation is stable in the following sense: if we have
    the input list [..., (parent, child1), ..., (parent, child2), ...], then
    child1 will be before child2 in the output list (if there there is no
    additional dependency forcing another ordering).
    """
    # Represent the graph in dictionary form.
    graph = OrderedDict()
    num_parents = defaultdict(int)
    for parent, child in pairs:
        graph.setdefault(parent, []).append(child)
        num_parents[child] += 1

    # Begin with the parent-less items.
    result = [item for item in graph if num_parents[item] == 0]

    # Descend through graph, removing parents as we go.
    for parent in result:
        if parent in graph:
            for child in graph[parent]:
                num_parents[child] -= 1
                if num_parents[child] == 0:
                    result.append(child)
            del graph[parent]

    # If there's a cycle, just throw in whatever is left over.
    has_cycle = bool(graph)
    if has_cycle:
        result.extend(list(graph.keys()))
    return result, has_cycle