File: row_table_data_model.py

package info (click to toggle)
python-pyface 8.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,944 kB
  • sloc: python: 54,107; makefile: 82
file content (260 lines) | stat: -rw-r--r-- 8,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# (C) Copyright 2005-2023 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!
""" A row-oriented data model implementation.

This module provides a concrete implementation of a data model for the
case of non-hierarchical, row-oriented data.
"""
from collections.abc import Sequence

from traits.api import Instance, List, observe
from traits.observation.api import trait

from pyface.data_view.abstract_data_model import (
    AbstractDataModel, DataViewSetError
)
from pyface.data_view.index_manager import IntIndexManager
from pyface.data_view.data_models.data_accessors import AbstractDataAccessor


class RowTableDataModel(AbstractDataModel):
    """ A data model that presents a sequence of objects as rows.

    The data is expected to be a sequence of row objects, each object
    providing values for the columns via an AbstractDataAccessor subclass.
    Concrete implementations can be found in the data_accessors module that
    get data from attributes, indices of sequences, and keys of mappings,
    but for more complex situations, custom accessors can be defined.
    """

    #: A sequence of objects to display as rows.
    data = Instance(Sequence, allow_none=False)

    #: An object which describes how to map data for the row headers.
    row_header_data = Instance(AbstractDataAccessor, allow_none=False)

    #: An object which describes how to map data for each column.
    column_data = List(Instance(AbstractDataAccessor, allow_none=False))

    #: The index manager that helps convert toolkit indices to data view
    #: indices.
    index_manager = Instance(IntIndexManager, args=(), allow_none=False)

    # Data structure methods

    def get_column_count(self):
        """ How many columns in the data view model.

        Returns
        -------
        column_count : non-negative int
            The number of columns that the data view provides.
        """
        return len(self.column_data)

    def can_have_children(self, row):
        """ Whether or not a row can have child rows.

        Only the root has children.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.

        Returns
        -------
        can_have_children : bool
            Whether or not the row can ever have child rows.
        """
        return len(row) == 0

    def get_row_count(self, row):
        """ How many child rows the row currently has.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.

        Returns
        -------
        row_count : non-negative int
            The number of child rows that the row has.
        """
        if len(row) == 0:
            return len(self.data)
        else:
            return 0

    # Data value methods

    def get_value(self, row, column):
        """ Return the Python value for the row and column.

        This uses the row_header_data and column_data accessors to extract
        values for the row and column.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.
        column : sequence of int
            The indices of the column as a sequence of length 0 or 1.

        Returns
        -------
        value : Any
            The value represented by the given row and column.
        """
        if len(column) == 0:
            column_data = self.row_header_data
        else:
            column_data = self.column_data[column[0]]
        if len(row) == 0:
            return column_data.title
        obj = self.data[row[0]]
        return column_data.get_value(obj)

    def can_set_value(self, row, column):
        """ Whether the value in the indicated row and column can be set.

        This uses the row_header_data and column_data accessors to determine
        if the value may be changed.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.
        column : sequence of int
            The indices of the column as a sequence of length 0 or 1.

        Returns
        -------
        can_set_value : bool
            Whether or not the value can be set.
        """
        if len(row) == 0:
            return False
        if len(column) == 0:
            column_data = self.row_header_data
        else:
            column_data = self.column_data[column[0]]
        obj = self.data[row[0]]
        return column_data.can_set_value(obj)

    def set_value(self, row, column, value):
        """ Set the Python value for the row and column.

        This uses the row_header_data and column_data accessors to set
        the value.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.
        column : sequence of int
            The indices of the column as a sequence of length 0 or 1.
        value : Any
            The new value for the given row and column.

        Raises
        -------
        DataViewSetError
            If the value cannot be set.
        """
        if len(row) == 0:
            raise DataViewSetError("Can't set column titles.")
        if len(column) == 0:
            column_data = self.row_header_data
        else:
            column_data = self.column_data[column[0]]
        obj = self.data[row[0]]
        column_data.set_value(obj, value)
        self.values_changed = (row, column, row, column)

    def get_value_type(self, row, column):
        """ Return the value type of the given row and column.

        This uses the row_header_data and column_data accessors to get
        the value type.

        Parameters
        ----------
        row : sequence of int
            The indices of the row as a sequence from root to leaf.
        column : sequence of int
            The indices of the column as a sequence of length 0 or 1.

        Returns
        -------
        value_type : AbstractValueType or None
            The value type of the given row and column, or None if no value
            should be displayed.
        """
        if len(column) == 0:
            column_data = self.row_header_data
        else:
            column_data = self.column_data[column[0]]
        if len(row) == 0:
            return column_data.title_type
        return column_data.value_type

    # data update methods

    @observe("data")
    def _update_data(self, event):
        self.structure_changed = True

    @observe(trait("data", notify=False).list_items(optional=True))
    def _update_data_items(self, event):
        if len(event.added) != len(event.removed):
            # number of rows has changed
            self.structure_changed = True
        else:
            if isinstance(event.index, int):
                start = event.index
                stop = min(event.index + len(event.added), len(self.data)) - 1
            else:
                start = event.index.start
                stop = min(event.index.stop, len(self.data)) - 1
            self.values_changed = ((start,), (), (stop,), ())

    @observe('row_header_data')
    def _update_row_header_data(self, event):
        self.values_changed = ((), (), (), ())

    @observe('row_header_data:updated')
    def _update_row_header_data_event(self, event):
        if event.new[1] == 'value':
            if len(self.data) > 0:
                self.values_changed = ((0,), (), (len(self.data) - 1,), ())
        else:
            self.values_changed = ((), (), (), ())

    @observe('column_data.items')
    def _update_all_column_data_items(self, event):
        self.structure_changed = True

    @observe('column_data:items:updated')
    def _update_column_data(self, event):
        index = self.column_data.index(event.new[0])
        if event.new[1] == 'value':
            if len(self.data) > 0:
                self.values_changed = (
                    (0,), (index,), (len(self.data) - 1,), (index,)
                )
        else:
            self.values_changed = ((), (index,), (), (index,))

    # default data value

    def _data_default(self):
        return []