1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
import timeit, sys, random
import glm, numpy
ON_WINDOWS = sys.platform == 'win32'
print_horizontal_rule = lambda: print("+----------------------------------------+------------+------------+-----------+")
pad_with_spaces = lambda text, length, align="left": text + " " * (length - len(text)) if align == "left" else " " * (length - len(text)) + text
seconds_to_milliseconds = lambda seconds: int(round(seconds * 1000, 0))
pyglm_total_time = 0
numpy_total_time = 0
def word_wrap(text, max_length):
out = []
current_word = []
current_length = 0
for c in text:
if current_length >= max_length:
out.append("\n")
current_length = len(current_word)
if c == " ":
out.append("".join(current_word))
if (current_length < max_length):
out.append(" ")
current_word = []
elif c == "\n":
out.append("".join(current_word))
out.append("\n")
current_word = []
current_length = 0
else:
current_word.append(c)
current_length += 1
if current_word:
out.append("".join(current_word))
return "".join(out).rstrip()
def print_row(descr, pyglm, numpy, ratio, print_header=True, end="\n"):
descr = word_wrap(descr, 38)
descr_lines = descr.split("\n")
if print_header:
for line in descr_lines[:-1]:
print(f"| {pad_with_spaces(line, 38)} | {' ' * 10} | {' ' * 10} | {' ' * 9} |")
descr_last_line = descr_lines[-1]
print(f"| {pad_with_spaces(descr_last_line, 38)} | {pad_with_spaces(pyglm, 10, align='right')} | {pad_with_spaces(numpy, 10, align='right')} | {pad_with_spaces(ratio, 9, align='right')} |", end=end)
def run_test(descr, pyglm_setup_code, pyglm_code, numpy_setup_code, numpy_code, number):
global pyglm_total_time, numpy_total_time
descr += f"\n({number:,} times)"
if ON_WINDOWS:
print_row(descr, "", "", "", end="\r")
pyglm_result = 2**31
numpy_result = 2**31
for i in range(10):
run_pyglm_first = random.choice((True,False))
if run_pyglm_first:
pyglm_result = min(pyglm_result, timeit.timeit(pyglm_code, pyglm_setup_code, number=number))
numpy_result = min(numpy_result, timeit.timeit(numpy_code, numpy_setup_code, number=number))
else:
numpy_result = min(numpy_result, timeit.timeit(numpy_code, numpy_setup_code, number=number))
pyglm_result = min(pyglm_result, timeit.timeit(pyglm_code, pyglm_setup_code, number=number))
if ON_WINDOWS:
print_row(descr, "{}ms".format(seconds_to_milliseconds(pyglm_result)), "{}ms".format(seconds_to_milliseconds(numpy_result)), "{:.02f}x".format(numpy_result / pyglm_result), end="\r", print_header=False)
pyglm_total_time += pyglm_result
numpy_total_time += numpy_result
print_row(descr, "{}ms".format(seconds_to_milliseconds(pyglm_result)), "{}ms".format(seconds_to_milliseconds(numpy_result)), "{:.02f}x".format(numpy_result / pyglm_result), print_header=not ON_WINDOWS)
print_horizontal_rule()
print(f"""Evaluating performance of PyGLM compared to NumPy.
Running on platform '{sys.platform}'.
Python version:
{sys.version}
Comparing the following module versions:
{glm.version}
vs
NumPy version {numpy.__version__}
________________________________________________________________________________
The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.
""")
print_horizontal_rule()
print_row("Description", "PyGLM time", "NumPy time", "ratio")
print_horizontal_rule()
############################
# Actual tests start here: #
############################
run_test("3 component vector creation",
"import glm",
"glm.vec3()",
"import numpy",
"numpy.zeros((3,), numpy.float32)",
100000
)
run_test("3 component vector creation with custom components",
"import glm",
"glm.vec3(1,2,3)",
"import numpy",
"numpy.array((1,2,3), numpy.float32)",
50000
)
run_test("dot product",
"import glm; v1 = glm.vec3(); v2 = glm.vec3()",
"glm.dot(v1, v2)",
"import numpy; v1 = numpy.zeros((3,), numpy.float32); v2 = numpy.zeros((3,), numpy.float32)",
"numpy.dot(v1, v2)",
50000
)
run_test("cross product",
"import glm; v1 = glm.vec3(1); v2 = glm.vec3(1,2,3)",
"glm.cross(v1, v2)",
"import numpy; v1 = numpy.array((1,1,1), numpy.float32); v2 = numpy.array((1,2,3), numpy.float32)",
"numpy.cross(v1, v2)",
25000
)
run_test("L2-Norm of 3 component vector",
"import glm; v = glm.vec3(1,2,3)",
"glm.l2Norm(v)",
"import numpy; v = numpy.array((1,1,1), numpy.float32)",
"numpy.linalg.norm(v)",
100000
)
run_test("4x4 matrix creation",
"import glm",
"glm.mat4(0)",
"import numpy",
"numpy.zeros((4,4), numpy.float32)",
50000
)
run_test("4x4 identity matrix creation",
"import glm",
"glm.mat4()",
"import numpy",
"numpy.identity(4, numpy.float32)",
100000
)
run_test("4x4 matrix transposition",
"import glm; m = glm.mat4()",
"glm.transpose(m)",
"import numpy; m = numpy.identity(4, numpy.float32)",
"numpy.transpose(m)",
50000
)
run_test("4x4 multiplicative inverse",
"import glm; m = glm.mat4()",
"glm.inverse(m)",
"import numpy; m = numpy.identity(4, numpy.float32)",
"numpy.linalg.inv(m)",
50000
)
run_test("3 component vector addition",
"import glm; v1 = glm.vec3(1); v2 = glm.vec3(1,2,3)",
"v1 + v2",
"import numpy; v1 = numpy.array((1,1,1), numpy.float32); v2 = numpy.array((1,2,3), numpy.float32)",
"v1 + v2",
100000
)
run_test("4x4 matrix multiplication",
"import glm; m1 = glm.mat4(); m2 = glm.mat4(2)",
"m1 * m2",
"import numpy; m1 = numpy.identity(4, numpy.float32); m2 = numpy.identity(4, numpy.float32) * 2",
"m1 * m2",
100000
)
run_test("4x4 matrix x vector multiplication",
"import glm; m = glm.mat4(); v = glm.vec4()",
"m * v",
"import numpy; m = numpy.identity(4, numpy.float32); v = numpy.zeros((4,), numpy.float32)",
"m * v",
100000
)
print_row("TOTAL",
"{:.02f}s".format(pyglm_total_time),
"{:.02f}s".format(numpy_total_time),
"{:.02f}x".format(numpy_total_time / pyglm_total_time))
print_horizontal_rule()
|