1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
[//]: # (generated using SlashBack 0.2.0)
# Using Arrays
PyGLM's array type was introduced in version 2\.0\.0 to reduce the likelihood of requiring users to also use numpy besides glm\.
It's mainly intended to **provide a way of passing multiple glm type instances** \(such as vectors\) **to external C functions**
\(such as glBufferData\)\.
## Table of contents
1. [About arrays](#about-arrays)
2. [Initialization](#initialization)
* [\.\. with vectors, matrices, quaternions or ctypes number objects](#-with-vectors-matrices-quaternions-or-ctypes-number-objects)
* [\.\. with other array instances](#-with-other-array-instances)
* [\.\. with other compatible arrays / lists / iterables](#-with-other-compatible-arrays--lists--iterables)
* [\.\. as a reference instead of a copy](#-as-a-reference-instead-of-a-copy)
* [\.\. with zeros](#-with-zeros)
* [\.\. from numbers](#-from-numbers)
3. [Members](#members)
4. [Methods](#methods)
* [The copy protocol](#the-copy-protocol)
* [Pickling](#pickling)
* [To list / tuple](#to-list--tuple)
* [To and from bytes](#to-and-from-bytes)
* [From Numbers](#from-numbers)
* [As Reference](#as-reference)
* [Zeros](#zeros)
* [Filter](#filter)
* [Map](#map)
* [Sort](#sort)
* [Split components](#split-components)
* [Reduce](#reduce)
* [Concat](#concat)
* [Repeat](#repeat)
5. [Operators](#operators)
* [Numeric operations](#numeric-operations)
* [getitem and setitem](#getitem-and-setitem--operator)
* [contains](#contains-in-operator)
* [len](#len)
* [str](#str)
* [repr](#repr)
* [iter](#iter)
* [hash](#hash)
## About arrays
PyGLM's arrays are pure data copies of **one or multiple instances** of a **single PyGLM type**\.
For example, an array could copy the data of five different ``` vec3 ``` instances\.
However, it cannot copy the data of instances, that don't have the same type, like two ``` vec2 ``` instances and one ``` dvec2 ``` instance\.
Additionally, the data inside the array is only a **copy**, thus if the data inside the array is modified, it won't affect the instances it copied the data from\.
## Initialization
Arrays can be initialized in a few different ways\.
### \.\.\. with vectors, matrices, quaternions or ctypes number objects
An array can be initialized with any number of vectors, metrices or quaternions, as long as they're all of the same type\.
``` Python
>>> array(vec3(1, 2, 3), vec3(4, 5, 6))
array(vec3(1, 2, 3), vec3(4, 5, 6))
>>> array(vec3(), ivec3())
TypeError: arrays have to be initialized with arguments of the same glm type
```
The same holds true for ctypes numbers:
``` Python
>>> array(int8(2), int8(3))
array(c_int8(2), c_int8(3))
>>> array(int8(2), int16(3))
TypeError: arrays have to be initialized with arguments of the same type
```
You can also create an array of ctypes numbers from normal numbers using ``` from_numbers ```, which needs to have the data type as it's first argument:
``` Python
>>> array.from_numbers(int8, 2, 3)
array(c_int8(2), c_int8(3))
>>> array(int8, 2, 3) # alternative way
array(c_int8(2), c_int8(3))
```
*Note: The list representations of vecs, mats and quats such as ``` ((1, 2), (3, 4)) ``` \(an alias for ``` mat2(1, 2, 3, 4) ```\) cannot be used here\.*
### \.\.\. with other array instances
You can obtain a copy of an array by using the copy constructor\.
``` Python
arr_copy = array(arr)
```
### \.\.\. with other compatible arrays / lists / iterables
You can convert any compatible type to a PyGLM array\.
This includes lists, tuples, etc\. and types that support the buffer protocol \(such as numpy's arrays\):
``` Python
>>> array((ivec1(), ivec1()))
array(ivec1(0), ivec1(0))
>>> array([dmat2()])
array(dmat2x2((1, 0), (0, 1)))
>>> array(numpy.array([[1,2,3]]))
array(ivec3(1, 2, 3))
>>> array([[1,2,3]])
TypeError: invalid argument type(s) for array()
```
*Note: array buffers that store length 4 items are interpreted as vec4s rather than quats\.*
### \.\.\. as a reference instead of a copy
If you don't need or don't want a copy of an array or buffer, but want a reference instead \(i\.e\. use the same data in memory as another array / buffer\), you can do so by using ``` glm.array.as_reference ```\.
``` Python
>>> arr = array(vec3(1))
>>> arr2 = array.as_reference(arr)
>>> arr == arr2
True
>>> arr.address == arr2.address
True
>>> arr[0] = vec3(2) # if you change one of them, the other changes as well
>>> arr2
array(vec3(2, 2, 2))
```
*Note: ``` as_reference ``` only works with array instances or buffers \(e\.g\. ``` numpy.array ```\)\.
Also it may not always be possible to create a reference copy, in which case a normal copy is made and a warning is raised\.*
### \.\.\. with zeros
You can initialize an array with any given number of zeros or a given type:
``` Python
>>> array.zeros(4, uint8)
array(c_uint8(0), c_uint8(0), c_uint8(0), c_uint8(0))
>>> array.zeros(2, vec3)
array(vec3(0, 0, 0), vec3(0, 0, 0))
```
### \.\.\. from numbers
You can initialize an array with numbers and a \(ctypes\) data type using ``` glm.array.from_numbers ```:
``` Python
>>> array.from_numbers(int8, 1, 2, 3)
array(c_int8(1), c_int8(2), c_int8(3))
>>> array.from_numbers(float32, 4.2, 1.1)
array(c_float(4.2), c_float(1.1))
>>> array(int8, 1, 2, 3) # You can also use the array() constructor, but beware that the dedicated function is faster
array(c_int8(1), c_int8(2), c_int8(3))
>>> array.from_numbers(vec1, 1, 2, 3)
TypeError: Invalid argument type for from_number(), expected a ctypes data type as the first argument. Got 'type'
```
## Members
PyGLM arrays have the following members:
Name | Type | Description
-|-|-
element\_type | type | Type class of the contained elements \(e\.g\. ``` glm.vec3 ```\)
length | int | Number of elements contained by a given array
address | int | The memory address where an array's data is stored
ptr | c\_void\_p | A ctypes pointer that points to the content of an array
nbytes | int | The total data size in bytes
typecode | str | A single character, describing the data type of the elements' values, according to [this list](https://docs.python.org/3/library/struct.html#format-characters)
dtype | str | A numpy\-like data type string
ctype | str | The respective ctypes data type
itemsize | int | The size of one array element in bytes
dt\_size | int | The size of each single component of the elements in bytes \(size of data type\)
readonly | int | Whether or not the array is read\-only
reference | int | The reference to the array owning the data \(if any\)
## Methods
### The copy protocol
Arrays support the copy protocol \(see [here](https://docs.python.org/3/library/copy.html)\)\.
You can use ``` copy.copy(<array>) ``` or ``` copy.deepcopy(<array>) ``` to get a copy of an array\.
### Pickling
Arrays support [pickling](https://docs.python.org/3/library/pickle.html#module-interface) \(as of PyGLM 2\.0\.0\), which is Python's serialization method\.
### To list / tuple
Any array has a ``` to_list() ``` and a ``` to_tuple() ``` function, which return's the arrays's data represented as a list or tuple respectively\.
### To and from bytes
Any array has a ``` to_bytes() ``` and a static ``` from_bytes() ``` method, which allows for conversion of the array's data to and from bytes strings\.
The ``` from_bytes() ``` method takes the bytes string and a target type \(``` uint8 ``` by default\) as arguments\.
Example:
``` Python
>>> array(uint8(1), uint8(2)).to_bytes()
b'\x01\x02'
>>> array.from_bytes(b"\x01\x02\x03", uint8)
array(c_uint8(1), c_uint8(2), c_uint8(3))
>>> array.from_bytes(b"\x00\x00\x00\x00", vec1)
array(vec1(0))
>>> array.from_bytes(b"\x00\x00\x00\x00" * 8, vec1)
array(vec1(0), vec1(0), vec1(0), vec1(0), vec1(0), vec1(0), vec1(0), vec1(0))
```
### From Numbers
The array class has a static ``` from_numbers ``` method, which allows for creation of a one\-dimensional array of numbers\.
It takes a ctypes number type as it's first argument\.
Example:
``` Python
>>> array.from_numbers(c_float, 1.2, 3.4)
array(c_float(1.2), c_float(3.4))
>>> array.from_numbers(int32, 1, 3, 4, 5)
array(c_int32(1), c_int32(3), c_int32(4), c_int32(5))
```
### As Reference
The array class also has a static ``` as_reference ``` method, which allows for creation of a reference copy of other arrays or objects that support the buffer protocol\.
A reference copy means that the newly created array will use the same data in memory as the source array\.
It will also keep a reference to the object it shares the data with in the ``` reference ``` member\.
Example:
``` Python
>>> arr = array(vec2(1))
>>> arr2 = array.as_reference(arr)
>>> arr == arr2
True
>>> arr is arr2.reference
True
>>> arr[0] = vec2(-1) # if you change one of them, the other changes as well
>>> arr2
array(vec2(-1, -1))
```
### Zeros
Additionally, the array class has a static ``` zeros ``` method, which allows for creation of an array with items that are initialized with zeros\.
This is the fastest way of creating an array, as it uses the builtin ``` calloc ``` function to allocate the memory and initialize it in the same step\.
Example:
``` Python
>>> array.zeros(4, uint8)
array(c_uint8(0), c_uint8(0), c_uint8(0), c_uint8(0))
>>> array.zeros(2, vec3)
array(vec3(0, 0, 0), vec3(0, 0, 0))
>>> array.zeros(1, mat4)
array(mat4x4((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)))
```
### Filter
You can filter an array using a custom filtering function \(i\.e\. create a new array with all of this array's elements that match a certain criteria\)\.
The filtering function is called with each element of the array and must return ``` True ``` for the elements to keep and ``` False ``` for the elements to discard\.
Example:
``` Python
>>> array(c_float, 1, 2, 3, 4, 5).filter(lambda x: x > 3)
array(c_float(4), c_float(5))
>>> array(vec3(1), vec3(2), vec3(3)).filter(lambda x: x.x + x.y == 2)
array(vec3(1, 1, 1))
```
### Map
You can map the elements of an array to one or any number of new values using a custom mapping function\.
The mapping function is supplied with the amounts of arguments that the map function is given\.
If the mapping function returns ``` None ```, the element is discarded \(much like filter\)\.
If it returns a single value, that value becomes a new element of the resulting array\.
If it returns a tuple, all of the tuple's items are added to the resulting array\.
When the mapping function returns numbers, they are interpreted as ctypes numbers of the same type as the array that ``` map ``` was called on\.
If you want to specify a custom ctypes type to use, there is a keyword argument called ``` ctype ``` that can be used to do that\.
Example:
``` Python
>>> array(c_float, 1, 2, 3).map(lambda x: x + 1)
array(c_float(2), c_float(3), c_float(4))
>>> array(c_float, 1, 2, 3).map(vec3)
array(vec3(1, 1, 1), vec3(2, 2, 2), vec3(3, 3, 3))
>>> array(c_float, 1, 2, 3, 4, 5).map(lambda x: x if x > 3 else None)
array(c_float(4), c_float(5))
>>> array(c_float, 1, 2).map(lambda x: (x, x))
array(c_float(1), c_float(1), c_float(2), c_float(2))
>>> array(c_float, 1, 2).map(lambda x: (3, 4) if x == 1 else 5)
array(c_float(3), c_float(4), c_float(5))
>>> arr1 = array(c_float, 1, 2, 3)
>>> arr2 = array(c_float, 4, 5, 6)
>>> arr1.map(lambda x, y: (x + x) * y, arr2)
array(c_float(8), c_float(20), c_float(36))
>>> arr3 = array(c_float, 7, 8, 9)
>>> arr1.map(lambda x, y, z: vec3(x, y, z), arr2, arr3)
array(vec3(1, 4, 7), vec3(2, 5, 8), vec3(3, 6, 9))
>>> arr1.map(lambda x, y, z: x * y + z, arr2, arr3)
array(c_float(11), c_float(18), c_float(27))
>>> arr4 = array(vec3(1, 2, 3), vec3( 4, 5, 6))
>>> arr4.map(normalize)
array(vec3(0.267261, 0.534522, 0.801784), vec3(0.455842, 0.569803, 0.683764))
>>> arr5 = array(vec3(7, 8, 9), vec3(10,11,12))
>>> arr4.map(dot, arr5)
array(c_float(50), c_float(167))
>>> arr4.map(dot, arr5, ctype = c_int32)
array(c_int32(50), c_int32(167))
```
### Sort
You can sort an array by using a custom sorting function\.
The sorting function is called with two elements from the array and should return ``` -1 ``` if the first element comes before the second element in order\.
Otherwise it should return ``` 0 ``` for equal elements and ``` 1 ``` if the first element comes after the second\.
The sorting algorithm used is a recursive quicksort\.
Example:
``` Python
>>> arr = array(c_float, 6, 5, 4, 3, 2, 1)
>>> arr.sort(lambda x, y: -1 if x < y else 0 if x == y else 1)
>>> arr
array(c_float(1), c_float(2), c_float(3), c_float(4), c_float(5), c_float(6))
>>> arr.sort(lambda x, y: int(sign(y - x)))
>>> arr
array(c_float(6), c_float(5), c_float(4), c_float(3), c_float(2), c_float(1))
>>> arr.sort(cmp) # using glm.cmp
>>> arr
array(c_float(1), c_float(2), c_float(3), c_float(4), c_float(5), c_float(6))
```
### Split components
You can split an array into the components of it's elements using the ``` split_components() ``` method\.
Splits each element of this array into it's components\.
Returns one or multiple arrays wrapped in a tuple\.
Example:
``` Python
>>> arr = array(vec3(1, 2, 3), vec3(4, 5, 6))
>>> arr.split_components()
(array(c_float(1), c_float(4)),
array(c_float(2), c_float(5)),
array(c_float(3), c_float(6)))
>>> arr = array(mat2((1,2),(3,4)), mat2((5,6),(7,8)), mat2((9,10),(11,12)))
>>> arr.split_components()
(array(vec2(1, 2), vec2(5, 6), vec2(9, 10)),
array(vec2(3, 4), vec2(7, 8), vec2(11, 12)))
>>> arr = array(c_float, 6, 5, 4, 3, 2, 1) # doesn't have any components
>>> arr.split_components()
NotImplementedError: split_components() is not defined for ctypes arrays
```
### Reduce
Used to apply a binary function to this array's elements cumulatively, reducing the array to a single value\. If an optional initializer is given, it is placed before the first element\.
Example:
``` Python
>>> arr = array(c_float, 6, 5, 4, 3, 2, 1)
>>> arr.reduce(lambda x, y: x + y) # (((((6+5)+4)+3)+2)+1)
21.0
>>> arr.reduce(mul) # (((((6*5)*4)*3)*2)*1)
720.0
>>> arr.reduce(sub) # (((((6-5)-4)-3)-2)-1)
-9.0
>>> arr.reduce(sub, 21) # with initializer: ((((((21-6)-5)-4)-3)-2)-1)
0.0
```
### Concat
Arrays can be combined / concatenated using the ``` concat() ``` method, as long as they have the same element type\.
``` Python
>>> array(vec2(1, 2)).concat(array(vec2(3, 4)))
array(vec2(1, 2), vec2(3, 4))
>>> array(vec4()).concat(array(vec1()))
ValueError: the given arrays are incompatible
```
### Repeat
Arrays can be repeated a given number of times using the ``` repeat() ``` method\.
``` Python
>>> array(vec3(1, 2, 3)).repeat(3)
array(vec3(1, 2, 3), vec3(1, 2, 3), vec3(1, 2, 3))
```
### Reinterpret cast
You can reinterpret the data of an array as a different element type using the ``` reinterpret_cast() ``` method\.
Example:
``` Python
>>> array(vec3(1, 2, 3)).reinterpret_cast(float32)
array(c_float(1), c_float(2), c_float(3))
>>> array.from_numbers(float32, 1, 2, 3, 4, 5, 6, 7, 8, 9).reinterpret_cast(vec3)
array(vec3(1, 2, 3), vec3(4, 5, 6), vec3(7, 8, 9))
```
## Operators
### Numeric operations
Arrays support a dozen numeric operations:
* Addition \(``` + ```\)
* Subtraction \(``` - ```\)
* Multiplication \(``` * ```\)
* Division \(``` / ```\)
* Modulus \(``` % ```\)
* Power \(``` ** ```\)
* Negation \(``` - ```\)
* Absolution \(``` abs() ```\)
* Inversion \(``` ~ ```\)
* Left shift \(``` << ```\)
* Right shift \(``` >> ```\)
* Bitwise and \(``` & ```\)
* Bitwise or \(``` | ```\)
* Bitwise xor \(``` ^ ```\)
*Note: Not all types are compatible though\.*
### getitem, setitem and delitem \(``` [] ``` operator\)
You can access the individual elements of an array using indices\.
Likewise you can also modify it's data by overwriting it or delete it using ``` del ```
``` Python
>>> arr = array(vec1(1), vec1(2), vec1(3))
>>> arr[0]
vec1( 1 )
>>> arr[1] = vec1(0)
>>> arr
array(vec1(1), vec1(0), vec1(3))
>>> del arr[2]
>>> arr
array(vec1(1), vec1(0))
```
You can also use slices to get or modify sub\-arrays:
``` Python
>>> arr = array(vec1(1), vec1(2), vec1(3), vec1(4))
>>> arr[:2]
array(vec1(1), vec1(2))
>>> arr[::2]
array(vec1(1), vec1(3))
>>> del arr[1:3]
>>> arr
array(vec1(1), vec1(4))
>>> arr[:] = array(vec1(8), vec1(9))
>>> arr
array(vec1(8), vec1(9))
```
Slices have the following syntax: ``` start_index : stop_index : optional_step ```, meaning you start at ``` start ``` and go ``` step ``` steps until you've reached or passed ``` stop ``` \(exclusive\) or the greatest possible index\.
### contains \(``` in ``` operator\)
You can check wether or not an element is present in the array using the ``` in ``` operator\.
``` Python
>>> arr = array(vec2(1, 2), vec2(3, 4))
>>> vec2() in arr
False
>>> vec2(3, 4) in arr
True
>>> vec2(2, 3) in arr
False
```
### len
You can acquire the length of an array using the built\-in ``` len() ``` function\.
``` Python
>>> len(array(vec1(0), vec1(1)))
2
>>> len(array(vec2(0, 1), vec2(2, 3), vec2(4, 5)))
3
```
### str
You can get a string representation of an array using the built\-in ``` str() ``` function\.
Example:
``` Python
>>> print(str(array(vec2(1, 2), vec2(3, 4), vec2(5, 6))))
[
[ 1, 2 ],
[ 3, 4 ],
[ 5, 6 ],
]
>>> print(str(array(mat2(1, 2, 3, 4), mat2(5, 6, 7, 8))))
[
[
[ 1, 2 ],
[ 3, 4 ],
],
[
[ 5, 6 ],
[ 7, 8 ],
],
]
```
### repr
You can get a reproducable string representation of an array using the built\-in ``` str() ``` function\.
Example:
``` Python
>>> print(repr(array(vec2(1, 2), vec2(3, 4), vec2(5, 6))))
array(vec2(1, 2), vec2(3, 4), vec2(5, 6))
>>> print(repr(array(mat2(1, 2, 3, 4), mat2(5, 6, 7, 8))))
array(mat2x2((1, 2), (3, 4)), mat2x2((5, 6), (7, 8)))
```
### iter
You can get an iterator from an array using ``` iter() ```
``` Python
>>> arr = array(vec2(1, 2), vec2(3, 4))
>>> it = iter(arr)
>>> next(it)
vec2( 1, 2 )
>>> next(it)
vec2( 3, 4 )
```
### hash
You can generate a hash value for arrays using ``` hash() ```
Example:
``` Python
>>> arr = array(vec3(1), vec3(2), vec3(3), vec3(4))
>>> hash(arr)
-2624592468369027458
>>> arr2 = array(vec3(1), vec3(2), vec3(3))
>>> hash(arr2)
9163283608357050393
>>> arr3 = arr2 + array(vec3(4))
>>> hash(arr3)
-2624592468369027458
```
|