1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
\c\This file was generated using a tool\c\
\h1\func_common methods\h1\
The following methods are all part of the \b\func_common methods\b\.
It contains common GLSL functions.
\h2\Table of contents\h2\
\ul\
\-\\url #abs-function\\b\abs\b\ function\url\
\-\\url #ceil-function\\b\ceil\b\ function\url\
\-\\url #clamp-function\\b\clamp\b\ function\url\
\-\\url #floatbitstoint-function\\b\floatBitsToInt\b\ function\url\
\-\\url #floatbitstouint-function\\b\floatBitsToUint\b\ function\url\
\-\\url #floor-function\\b\floor\b\ function\url\
\-\\url #fma-function\\b\fma\b\ function\url\
\-\\url #fmax-function\\b\fmax\b\ function\url\
\-\\url #fmin-function\\b\fmin\b\ function\url\
\-\\url #fract-function\\b\fract\b\ function\url\
\-\\url #frexp-function\\b\frexp\b\ function\url\
\-\\url #intbitstofloat-function\\b\intBitsToFloat\b\ function\url\
\-\\url #isinf-function\\b\isinf\b\ function\url\
\-\\url #isnan-function\\b\isnan\b\ function\url\
\-\\url #ldexp-function\\b\ldexp\b\ function\url\
\-\\url #max-function\\b\max\b\ function\url\
\-\\url #min-function\\b\min\b\ function\url\
\-\\url #mix-function\\b\mix\b\ function\url\
\-\\url #mod-function\\b\mod\b\ function\url\
\-\\url #modf-function\\b\modf\b\ function\url\
\-\\url #round-function\\b\round\b\ function\url\
\-\\url #roundeven-function\\b\roundEven\b\ function\url\
\-\\url #sign-function\\b\sign\b\ function\url\
\-\\url #smoothstep-function\\b\smoothstep\b\ function\url\
\-\\url #step-function\\b\step\b\ function\url\
\-\\url #trunc-function\\b\trunc\b\ function\url\
\-\\url #uintbitstofloat-function\\b\uintBitsToFloat\b\ function\url\
\ul\
\h3\abs() function\h3\
\raw\#### <code>glm.<code>**abs**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\x\code\ if \code\x >= 0\code\; otherwise it returns \code\-x\code\.
\raw\#### <code>glm.<code>**abs**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component \code\c\code\ of \code\x\code\,
\raw\  \raw\Returns \code\c\code\ if \code\c >= 0\code\; otherwise it returns \code\-c\code\.
\h3\ceil() function\h3\
\raw\#### <code>glm.<code>**ceil**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer that is greater than or equal to \code\x\code\.
\raw\#### <code>glm.<code>**ceil**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component \code\c\code\ of \code\x\code\,
\raw\  \raw\Returns a value equal to the nearest integer that is greater than or equal to \code\c\code\.
\h3\clamp() function\h3\
\raw\#### <code>glm.<code>**clamp**(**x**: *number*, **minVal**: *number*, **maxVal**: *number*) -\\> *number*</code></code>\raw\
\raw\  \raw\Returns \code\min(max(x, minVal), maxVal)\code\.
\raw\#### <code>glm.<code>**clamp**(**x**: *vecN*, **minVal**: *number*, **maxVal**: *number*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\min(max(x, minVal), maxVal)\code\ for each component in \code\x\code\ using the floating-point values
\raw\  \raw\\code\minVal\code\ and \code\maxVal\code\.
\raw\#### <code>glm.<code>**clamp**(**x**: *vecN*, **minVal**: *vecN*, **maxVal**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\min(max(x, minVal), maxVal)\code\ for each component in \code\x\code\ using the floating-point values
\raw\  \raw\\code\minVal\code\ and \code\maxVal\code\.
\h3\floatBitsToInt() function\h3\
\raw\#### <code>glm.<code>**floatBitsToInt**(**v**: *float*) -\\> *int*</code></code>\raw\
\raw\  \raw\Returns a signed integer value representing the encoding of a floating-point value.
\raw\  \raw\The floating-point value's bit-level representation is preserved.
\raw\#### <code>glm.<code>**floatBitsToInt**(**v**: *fvecN*) -\\> *ivecN*</code></code>\raw\
\raw\  \raw\Returns a signed integer value representing the encoding of a floating-point value.
\raw\  \raw\The floating-point value's bit-level representation is preserved.
\h3\floatBitsToUint() function\h3\
\raw\#### <code>glm.<code>**floatBitsToUint**(**v**: *float*) -\\> *int*</code></code>\raw\
\raw\  \raw\Returns an unsigned integer value representing the encoding of a floating-point value.
\raw\  \raw\The floating-point value's bit-level representation is preserved.
\raw\#### <code>glm.<code>**floatBitsToUint**(**v**: *fvecN*) -\\> *uvecN*</code></code>\raw\
\raw\  \raw\Returns an unsigned integer value representing the encoding of a floating-point value.
\raw\  \raw\The floating-point value's bit-level representation is preserved.
\h3\floor() function\h3\
\raw\#### <code>glm.<code>**floor**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer that is less then or equal to \code\x\code\.
\raw\#### <code>glm.<code>**floor**(**v**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component \code\c\code\ of \code\v\code\:
\raw\  \raw\Returns a value equal to the nearest integer that is less then or equal to \code\c\code\.
\h3\fma() function\h3\
\raw\#### <code>glm.<code>**fma**(**a**: *float*, **b**: *float*, **c**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Computes and returns \code\a * b + c\code\.
\h3\fmax() function\h3\
\raw\#### <code>glm.<code>**fmax**(**x**: *number*, **y**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\x < y\code\; otherwise, it returns \code\x\code\. If one of the two arguments is \code\NaN\code\, the value
\raw\  \raw\of the other argument is returned.
\raw\#### <code>glm.<code>**fmax**(**x**: *vecN*, **y**: *number*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns \code\y\code\ if \code\c < y\code\; otherwise, it returns \code\c\code\. If one of the two arguments is \code\NaN\code\, the value
\raw\  \raw\of the other argument is returned.
\raw\#### <code>glm.<code>**fmax**(**x**: *vecN*, **y**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every index \code\i\code\:
\raw\  \raw\Returns \code\y[i]\code\ if \code\x[i] < y[i]\code\; otherwise, it returns \code\x[i]\code\. If one of the two arguments is
\raw\  \raw\\code\NaN\code\, the value of the other argument is returned.
\raw\#### <code>glm.<code>**fmax**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\fmax(fmax(a, b), c)\code\.
\raw\#### <code>glm.<code>**fmax**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*, **d**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\fmax(fmax(a, b), fmax(c, d))\code\.
\h3\fmin() function\h3\
\raw\#### <code>glm.<code>**fmin**(**x**: *number*, **y**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\y < x\code\; otherwise, it returns \code\x\code\. If one of the two arguments is \code\NaN\code\, the value
\raw\  \raw\of the other argument is returned.
\raw\#### <code>glm.<code>**fmin**(**x**: *vecN*, **y**: *number*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns \code\y\code\ if \code\y < c\code\; otherwise, it returns \code\c\code\. If one of the two arguments is \code\NaN\code\, the value
\raw\  \raw\of the other argument is returned.
\raw\#### <code>glm.<code>**fmin**(**x**: *vecN*, **y**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every index \code\i\code\:
\raw\  \raw\Returns \code\y[i]\code\ if \code\y[i] < x[i]\code\; otherwise, it returns \code\x[i]\code\. If one of the two arguments is
\raw\  \raw\\code\NaN\code\, the value of the other argument is returned.
\raw\#### <code>glm.<code>**fmin**(**a**: *vecN*, **b**: *vecN*, **c **: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\fmin(fmin(a, b), c)\code\.
\raw\#### <code>glm.<code>**fmin**(**a**: *vecN*, **b**: *vecN*, **c **: *vecN*, **d**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\fmin(fmin(a, b), fmin(c, d))\code\.
\h3\fract() function\h3\
\raw\#### <code>glm.<code>**fract**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\x - floor(x)\code\.
\raw\#### <code>glm.<code>**fract**(**c**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\x - floor(x)\code\.
\h3\frexp() function\h3\
\raw\#### <code>glm.<code>**frexp**(**x**: *float*) -\\> *(significant: float, exponent: int)*</code></code>\raw\
\raw\  \raw\Splits \code\x\code\ into a floating-point significand in the range \code\[0.5, 1.0)\code\ and an integral exponent
\raw\  \raw\of two, such that: \code\x = significand * exp(2, exponent)\code\
\raw\#### <code>glm.<code>**frexp**(**x**: *vecN*, **exp**: *ivecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Splits \code\x\code\ into a floating-point significand in the range \code\[0.5, 1.0)\code\ and an integral exponent
\raw\  \raw\of two, such that: \code\x = significand * exp(2, exponent)\code\
\raw\  \raw\The significand is returned by the function and the exponent is returned in the parameter
\raw\  \raw\\code\exp\code\. For a floating-point value of zero, the significantand exponent are both zero. For a
\raw\  \raw\floating-point value that is an infinity or is not a number, the results are undefined.
\h3\intBitsToFloat() function\h3\
\raw\#### <code>glm.<code>**intBitsToFloat**(**v**: *int*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a floating-point value corresponding to a signed integer encoding of a floating-point
\raw\  \raw\value. If an \code\inf\code\ or \code\NaN\code\ is passed in, it will not signal, and the resulting floating point
\raw\  \raw\value is unspecified. Otherwise, the bit-level representation is preserved.
\raw\#### <code>glm.<code>**intBitsToFloat**(**v**: *ivecN*) -\\> *fvecN*</code></code>\raw\
\raw\  \raw\Returns a floating-point value corresponding to a signed integer encoding of a floating-point
\raw\  \raw\value. If an \code\inf\code\ or \code\NaN\code\ is passed in, it will not signal, and the resulting floating point
\raw\  \raw\value is unspecified. Otherwise, the bit-level representation is preserved.
\h3\isinf() function\h3\
\raw\#### <code>glm.<code>**isinf**(**x**: *float*) -\\> *bool*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a positive infinity or negative infinity representation in the
\raw\  \raw\underlying implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no infinity representations.
\raw\#### <code>glm.<code>**isinf**(**x**: *vecN*) -\\> *bvecN*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a positive infinity or negative infinity representation in the
\raw\  \raw\underlying implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no infinity representations.
\raw\#### <code>glm.<code>**isinf**(**x**: *quat*) -\\> *bvecN*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a positive infinity or negative infinity representation in the
\raw\  \raw\underlying implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no infinity representations.
\h3\isnan() function\h3\
\raw\#### <code>glm.<code>**isnan**(**x**: *float*) -\\> *bool*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a \code\NaN\code\ (not a number) representation in the underlying
\raw\  \raw\implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no \code\NaN\code\ representations.
\raw\#### <code>glm.<code>**isnan**(**x**: *vecN*) -\\> *bvecN*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a \code\NaN\code\ (not a number) representation in the underlying
\raw\  \raw\implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no \code\NaN\code\ representations.
\raw\#### <code>glm.<code>**isnan**(**x**: *quat*) -\\> *bvecN*</code></code>\raw\
\raw\  \raw\Returns \code\True\code\ if \code\x\code\ holds a \code\NaN\code\ (not a number) representation in the underlying
\raw\  \raw\implementation's set of floating point representations.
\raw\  \raw\Returns \code\False\code\ otherwise, including for implementations with no \code\NaN\code\ representations.
\h3\ldexp() function\h3\
\raw\#### <code>glm.<code>**ldexp**(**x**: *number*, **exp**: *int*) -\\> *float*</code></code>\raw\
\raw\  \raw\Builds a floating-point number from \code\x\code\ and the corresponding integral exponent of two in
\raw\  \raw\\code\exp\code\, returning: \code\significand * exp(2, exponent)\code\. If this product is too large to be
\raw\  \raw\represented in the floating-point type, the result is undefined.
\raw\#### <code>glm.<code>**ldexp**(**x**: *vecN*, **exp**: *ivecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Builds a floating-point number from \code\x\code\ and the corresponding integral exponent of two in
\raw\  \raw\\code\exp\code\, returning: \code\significand * exp(2, exponent)\code\. If this product is too large to be
\raw\  \raw\represented in the floating-point type, the result is undefined.
\h3\max() function\h3\
\raw\#### <code>glm.<code>**max**(**x**: *number*, **y**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\x < y\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**max**(**x**: *vecN*, **y**: *number*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\x < y\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**max**(**x**: *vecN*, **y**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\x < y\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**max**(**a**: *number*, **b**: *number*, **c**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the maximum value of 3 inputs.
\raw\#### <code>glm.<code>**max**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns the maximum component wise value of 3 inputs.
\raw\#### <code>glm.<code>**max**(**a**: *number*, **b**: *number*, **c**: *number*, **d**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the maximum value of 4 inputs.
\raw\#### <code>glm.<code>**max**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*, **d**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns the maximum component wise value of 4 inputs.
\raw\#### <code>glm.<code>**max**(**iterable**) -\\> *any*</code></code>\raw\
\raw\  \raw\Returns the greatest number or the maximum component wise value respectively.
\h3\min() function\h3\
\raw\#### <code>glm.<code>**min**(**x**: *number*, **y**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\y < x\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**min**(**x**: *vecN*, **y**: *number*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\y < x\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**min**(**x**: *vecN*, **y**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\y < x\code\; otherwise, it returns \code\x\code\.
\raw\#### <code>glm.<code>**min**(**a**: *number*, **b**: *number*, **c**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the minimum value of 3 inputs.
\raw\#### <code>glm.<code>**min**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns the minimum component wise value of 3 inputs.
\raw\#### <code>glm.<code>**min**(**a**: *number*, **b**: *number*, **c**: *number*, **d**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the minimum value of 4 inputs.
\raw\#### <code>glm.<code>**min**(**a**: *vecN*, **b**: *vecN*, **c**: *vecN*, **d**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns the minimum component wise value of 4 inputs.
\raw\#### <code>glm.<code>**min**(**iterable**) -\\> *any*</code></code>\raw\
\raw\  \raw\Returns the smallest number or the minimum component wise value respectively.
\h3\mix() function\h3\
\raw\#### <code>glm.<code>**mix**(**x**: *number*, **y**: *number*, **a**: *float*) -\\> *number*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the floating-point
\raw\  \raw\value \code\a\code\. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**mix**(**x**: *number*, **y**: *number*, **a**: *bool*) -\\> *number*</code></code>\raw\
\raw\  \raw\Returns \code\y\code\ if \code\a\code\ is \code\True\code\ and \code\x\code\ otherwise.
\raw\#### <code>glm.<code>**mix**(**x**: *vecN*, **y**: *vecN*, **a**: *fvecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the floating-point
\raw\  \raw\value \code\a\code\. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**mix**(**x**: *vecN*, **y**: *vecN*, **a**: *bvecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For each component index \code\i\code\:
\raw\  \raw\Returns \code\y[i]\code\ if \code\a[i]\code\ is \code\True\code\ and \code\x[i]\code\ otherwise.
\raw\#### <code>glm.<code>**mix**(**x**: *matNxM*, **y**: *matNxM*, **a**: *fmatNxM*) -\\> *matNxM*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the floating-point
\raw\  \raw\value \code\a\code\ for each component. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**mix**(**x**: *matNxM*, **y**: *matNxM*, **a**: *float*) -\\> *matNxM*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the floating-point
\raw\  \raw\value \code\a\code\ for each component. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**mix**(**x**: *quat*, **y**: *quat*, **a**: *float*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Spherical linear interpolation of two quaternions. The interpolation is oriented and the
\raw\  \raw\rotation is performed at constant speed. For short path spherical linear interpolation, use
\raw\  \raw\the \code\slerp\code\ function.
\h3\mod() function\h3\
\raw\#### <code>glm.<code>**mod**(**a**, **b**) -\\> *Any*</code></code>\raw\
\raw\  \raw\Equivalent to \code\a % b\code\.
\h3\modf() function\h3\
\raw\#### <code>glm.<code>**modf**(**x**: *float*) -\\> *(fraction, integer)*</code></code>\raw\
\raw\  \raw\Returns the fractional part of \code\x\code\ and the integer part (as a whole number floating point value).
\raw\#### <code>glm.<code>**modf**(**x**: *vecN*, **i**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns the fractional part of \code\x\code\ and sets \code\i\code\ to the integer part (as a whole number floating
\raw\  \raw\point value).
\h3\round() function\h3\
\raw\#### <code>glm.<code>**round**(**x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer to \code\x\code\. The fraction \code\0.5\code\ will round in a
\raw\  \raw\direction chosen by the implementation, presumably the direction that is fastest. This
\raw\  \raw\includes the possibility that \code\round(x)\code\ returns the same value as \code\roundEven(x)\code\
\raw\#### <code>glm.<code>**round**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer to \code\x\code\. The fraction \code\0.5\code\ will round in a
\raw\  \raw\direction chosen by the implementation, presumably the direction that is fastest. This
\raw\  \raw\includes the possibility that \code\round(x)\code\ returns the same value as \code\roundEven(x)\code\ for all
\raw\  \raw\values of \code\x\code\.
\h3\roundEven() function\h3\
\raw\#### <code>glm.<code>**roundEven**(**x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer to \code\x\code\. A fractional part of \code\0.5\code\ will round
\raw\  \raw\toward the nearest even integer. (Both \code\3.5\code\ and \code\4.5\code\ for \code\x\code\ will return \code\4.0\code\.)
\raw\#### <code>glm.<code>**roundEven**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer to \code\x\code\. A fractional part of \code\0.5\code\ will round
\raw\  \raw\toward the nearest even integer. (Both \code\3.5\code\ and \code\4.5\code\ for \code\x\code\ will return \code\4.0\code\.)
\h3\sign() function\h3\
\raw\#### <code>glm.<code>**sign**(**x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\1.0\code\ if \code\x > 0\code\, \code\0.0\code\ if \code\x == 0\code\, or \code\-1.0\code\ if \code\x < 0\code\.
\raw\#### <code>glm.<code>**sign**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns \code\1.0\code\ if \code\x > 0\code\, \code\0.0\code\ if \code\x == 0\code\, or \code\-1.0\code\ if \code\x < 0\code\.
\h3\smoothstep() function\h3\
\raw\#### <code>glm.<code>**smoothstep**(**edge0**: *number*, **edge1**: *number*, **x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\0.0\code\ if \code\x <= edge0\code\ and \code\1.0\code\ if \code\x >= edge1\code\ and performs smooth Hermite interpolation
\raw\  \raw\between \code\0\code\ and \code\1\code\ when \code\edge0 < x < edge1\code\. This is useful in cases where you would want a
\raw\  \raw\threshold function with a smooth transition. This is equivalent to :
\raw\  \raw\\code\t = clamp((x - edge0) / (edge1 - edge0), 0, 1)\code\
\raw\  \raw\\code\return t * t * (3 - 2 * t)\code\
\raw\  \raw\Results are undefined if \code\edge0 >= edge1\code\.
\raw\#### <code>glm.<code>**smoothstep**(**edge0**: *number*, **edge1**: *number*, **x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\0.0\code\ if \code\x <= edge0\code\ and \code\1.0\code\ if \code\x >= edge1\code\ and performs smooth Hermite interpolation
\raw\  \raw\between \code\0\code\ and \code\1\code\ when \code\edge0 < x < edge1\code\. This is useful in cases where you would want a
\raw\  \raw\threshold function with a smooth transition. This is equivalent to :
\raw\  \raw\\code\t = clamp((x - edge0) / (edge1 - edge0), 0, 1)\code\
\raw\  \raw\\code\return t * t * (3 - 2 * t)\code\
\raw\  \raw\Results are undefined if \code\edge0 >= edge1\code\.
\raw\#### <code>glm.<code>**smoothstep**(**edge0**: *vecN*, **edge1**: *vecN*, **x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\0.0\code\ if \code\x <= edge0\code\ and \code\1.0\code\ if \code\x >= edge1\code\ and performs smooth Hermite interpolation
\raw\  \raw\between \code\0\code\ and \code\1\code\ when \code\edge0 < x < edge1\code\. This is useful in cases where you would want a
\raw\  \raw\threshold function with a smooth transition. This is equivalent to :
\raw\  \raw\\code\t = clamp((x - edge0) / (edge1 - edge0), 0, 1)\code\
\raw\  \raw\\code\return t * t * (3 - 2 * t)\code\
\raw\  \raw\Results are undefined if \code\edge0 >= edge1\code\.
\h3\step() function\h3\
\raw\#### <code>glm.<code>**step**(**edge**: *number*, **x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\0.0\code\ if \code\x < edge\code\, otherwise it returns \code\1.0\code\.
\raw\#### <code>glm.<code>**step**(**edge**: *number*, **x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns \code\0.0\code\ if \code\c < edge\code\, otherwise it returns \code\1.0\code\.
\raw\#### <code>glm.<code>**step**(**edge**: *vecN*, **x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every index \code\i\code\:
\raw\  \raw\Returns \code\0.0\code\ if \code\x[i] < edge[i]\code\, otherwise it returns \code\1.0\code\.
\h3\trunc() function\h3\
\raw\#### <code>glm.<code>**trunc**(**x**: *number*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a value equal to the nearest integer to \code\x\code\ whose absolute value is not larger than
\raw\  \raw\the absolute value of \code\x\code\.
\raw\#### <code>glm.<code>**trunc**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns a value equal to the nearest integer to \code\c\code\ whose absolute value is not larger than
\raw\  \raw\the absolute value of \code\c\code\.
\h3\uintBitsToFloat() function\h3\
\raw\#### <code>glm.<code>**uintBitsToFloat**(**v**: *int*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns a floating-point value corresponding to an unsigned integer encoding of a floating-point
\raw\  \raw\value. If an \code\inf\code\ or \code\NaN\code\ is passed in, it will not signal, and the resulting floating point
\raw\  \raw\value is unspecified. Otherwise, the bit-level representation is preserved.
\raw\#### <code>glm.<code>**uintBitsToFloat**(**v**: *ivecN*) -\\> *fvecN*</code></code>\raw\
\raw\  \raw\Returns a floating-point value corresponding to an unsigned integer encoding of a floating-point
\raw\  \raw\value. If an \code\inf\code\ or \code\NaN\code\ is passed in, it will not signal, and the resulting floating point
\raw\  \raw\value is unspecified. Otherwise, the bit-level representation is preserved.
|