1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
\c\This file was generated using a tool\c\
\h1\func_exponential methods\h1\
The following methods are all part of the \b\func_exponential methods\b\.
It contains exponential GLSL functions.
\h2\Table of contents\h2\
\ul\
\-\\url #exp-function\\b\exp\b\ function\url\
\-\\url #exp2-function\\b\exp2\b\ function\url\
\-\\url #inversesqrt-function\\b\inversesqrt\b\ function\url\
\-\\url #log-function\\b\log\b\ function\url\
\-\\url #log2-function\\b\log2\b\ function\url\
\-\\url #pow-function\\b\pow\b\ function\url\
\-\\url #sqrt-function\\b\sqrt\b\ function\url\
\ul\
\h3\exp() function\h3\
\raw\#### <code>glm.<code>**exp**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the natural exponentiation of \code\x\code\, i.e., \code\e^x\code\.
\raw\#### <code>glm.<code>**exp**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component c of x:
\raw\  \raw\Returns the natural exponentiation of \code\c\code\, i.e., \code\e^c\code\.
\raw\#### <code>glm.<code>**exp**(**x**: *quat*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Returns an exponential of a quaternion.
\h3\exp2() function\h3\
\raw\#### <code>glm.<code>**exp2**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\2\code\ raised to the \code\x\code\ power.
\raw\#### <code>glm.<code>**exp2**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns \code\2\code\ raised to the \code\c\code\ power.
\h3\inversesqrt() function\h3\
\raw\#### <code>glm.<code>**inversesqrt**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the reciprocal of the positive square root of \code\x\code\.
\raw\#### <code>glm.<code>**inversesqrt**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns the reciprocal of the positive square root of \code\c\code\.
\h3\log() function\h3\
\raw\#### <code>glm.<code>**log**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the natural logarithm of \code\x\code\, i.e., returns the value \code\y\code\ which satisfies the equation
\raw\  \raw\\code\x = e^y\code\. Results are undefined if \code\x <= 0\code\.
\raw\#### <code>glm.<code>**log**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns the natural logarithm of \code\c\code\, i.e., returns the value \code\y\code\ which satisfies the equation
\raw\  \raw\\code\c = e^y\code\. Results are undefined if \code\c <= 0\code\.
\raw\#### <code>glm.<code>**log**(**x**: *quat*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Returns a logarithm of a quaternion.
\h3\log2() function\h3\
\raw\#### <code>glm.<code>**log2**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the base \code\2\code\ log of \code\x\code\, i.e., returns the value \code\y\code\, which satisfies the equation
\raw\  \raw\\code\x = 2 ^ y\code\.
\raw\#### <code>glm.<code>**log2**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns the base \code\2\code\ log of \code\c\code\, i.e., returns the value \code\y\code\, which satisfies the equation
\raw\  \raw\\code\c = 2 ^ y\code\.
\h3\pow() function\h3\
\raw\#### <code>glm.<code>**pow**(**base**: *float*, **exponent**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns base raised to the power exponent.
\raw\#### <code>glm.<code>**pow**(**base**: *vecN*, **exponent**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every index \code\i\code\:
\raw\  \raw\Returns \code\base[i]\code\ raised to the power \code\exponent[i]\code\.
\raw\#### <code>glm.<code>**pow**(**base**: *quat*, **exponent**: *quat*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Returns a quaternion raised to a power.
\h3\sqrt() function\h3\
\raw\#### <code>glm.<code>**sqrt**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns the positive square root of \code\x\code\.
\raw\#### <code>glm.<code>**sqrt**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\For every component \code\c\code\ of \code\x\code\:
\raw\  \raw\Returns the positive square root of \code\c\code\.
\raw\#### <code>glm.<code>**sqrt**(**x**: *quat*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Returns the square root of a quaternion.
|