File: func_matrix.sb

package info (click to toggle)
python-pyglm 2.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,008 kB
  • sloc: cpp: 53,029; python: 3,683; makefile: 7
file content (37 lines) | stat: -rw-r--r-- 1,940 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
\c\This file was generated using a tool\c\
\h1\func_matrix methods\h1\
The following methods are all part of the \b\func_matrix methods\b\.
It contains GLSL matrix functions.
\h2\Table of contents\h2\
\ul\
\-\\url #determinant-function\\b\determinant\b\ function\url\
\-\\url #inverse-function\\b\inverse\b\ function\url\
\-\\url #matrixcompmult-function\\b\matrixCompMult\b\ function\url\
\-\\url #outerproduct-function\\b\outerProduct\b\ function\url\
\-\\url #transpose-function\\b\transpose\b\ function\url\
\ul\
\h3\determinant() function\h3\
\raw\#### <code>glm.<code>**determinant**(**m**: *matSxS*) -\\> *float*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Return the determinant of a squared matrix.

\h3\inverse() function\h3\
\raw\#### <code>glm.<code>**inverse**(**m**: *matSxS*) -\\> *matSxS*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Return the inverse of a squared matrix.

\raw\#### <code>glm.<code>**inverse**(**q**: *quat*) -\\> *quat*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Return the inverse of a quaternion.

\h3\matrixCompMult() function\h3\
\raw\#### <code>glm.<code>**matrixCompMult**(**x**: *matNxM*, **y**: *matNxM*) -\\> *matNxM*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Multiply matrix \code\x\code\ by matrix \code\y\code\ component-wise, i.e., \code\result[i][j]\code\ is the scalar product of
\raw\&emsp;&emsp;\raw\\code\x[i][j]\code\ and \code\y[i][j]\code\.

\h3\outerProduct() function\h3\
\raw\#### <code>glm.<code>**outerProduct**(**c**: *vecC*, **r**: *vecR*) -\\> *matRxC*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Treats the first parameter \code\c\code\ as a column vector and the second parameter \code\r\code\ as a row vector
\raw\&emsp;&emsp;\raw\and does a linear algebraic matrix multiply \code\c * r\code\.

\h3\transpose() function\h3\
\raw\#### <code>glm.<code>**transpose**(**x**: *matNxM*) -\\> *matMxN*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Returns the transposed matrix of \code\x\code\.