File: func_packing.sb

package info (click to toggle)
python-pyglm 2.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,008 kB
  • sloc: cpp: 53,029; python: 3,683; makefile: 7
file content (126 lines) | stat: -rw-r--r-- 10,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
\c\This file was generated using a tool\c\
\h1\func_packing methods\h1\
The following methods are all part of the \b\func_packing methods\b\.
Provides GLSL functions to pack and unpack half, single and double-precision floating point values into more compact integer types.
\h2\Table of contents\h2\
\ul\
\-\\url #packdouble2x32-function\\b\packDouble2x32\b\ function\url\
\-\\url #packhalf2x16-function\\b\packHalf2x16\b\ function\url\
\-\\url #packsnorm2x16-function\\b\packSnorm2x16\b\ function\url\
\-\\url #packsnorm4x8-function\\b\packSnorm4x8\b\ function\url\
\-\\url #packunorm2x16-function\\b\packUnorm2x16\b\ function\url\
\-\\url #packunorm4x8-function\\b\packUnorm4x8\b\ function\url\
\-\\url #unpackdouble2x32-function\\b\unpackDouble2x32\b\ function\url\
\-\\url #unpackhalf2x16-function\\b\unpackHalf2x16\b\ function\url\
\-\\url #unpacksnorm2x16-function\\b\unpackSnorm2x16\b\ function\url\
\-\\url #unpacksnorm4x8-function\\b\unpackSnorm4x8\b\ function\url\
\-\\url #unpackunorm2x16-function\\b\unpackUnorm2x16\b\ function\url\
\-\\url #unpackunorm4x8-function\\b\unpackUnorm4x8\b\ function\url\
\ul\
\h3\packDouble2x32() function\h3\
\raw\#### <code>glm.<code>**packDouble2x32**(**v**: *uvec2*) -\\> *float*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Returns a double-qualifier value obtained by packing the components of \code\v\code\ into a 64-bit
\raw\&emsp;&emsp;\raw\value. If an IEEE 754 \code\Inf\code\ or \code\NaN\code\ is created, it will not signal, and the resulting floating
\raw\&emsp;&emsp;\raw\point value is unspecified. Otherwise, the bit-level representation of \code\v\code\ is preserved. The
\raw\&emsp;&emsp;\raw\first vector component specifies the 32 least significant bits; the second component
\raw\&emsp;&emsp;\raw\specifies the 32 most significant bits.

\h3\packHalf2x16() function\h3\
\raw\#### <code>glm.<code>**packHalf2x16**(**v**: *vec2*) -\\> *int*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Returns an unsigned integer obtained by converting the components of a two-component
\raw\&emsp;&emsp;\raw\floating-point vector to the 16-bit floating-point representation found in the OpenGL
\raw\&emsp;&emsp;\raw\Specification, and then packing these two 16-bit integers into a 32-bit unsigned integer.
\raw\&emsp;&emsp;\raw\The first vector component specifies the 16 least-significant bits of the result; the
\raw\&emsp;&emsp;\raw\second component specifies the 16 most-significant bits.

\h3\packSnorm2x16() function\h3\
\raw\#### <code>glm.<code>**packSnorm2x16**(**v**: *vec2*) -\\> *int*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, converts each component of the normalized floating-point value \code\v\code\ into 8- or 16-bit
\raw\&emsp;&emsp;\raw\integer values. Then, the results are packed into the returned 32-bit unsigned integer.
\raw\&emsp;&emsp;\raw\The conversion for component \code\c\code\ of \code\v\code\ to fixed point is done as follows :
\raw\&emsp;&emsp;\raw\\code\round(clamp(v, -1, +1) * 32767.0)\code\. The first component of the vector will be written to
\raw\&emsp;&emsp;\raw\the least significant bits of the output; the last component will be written to the most
\raw\&emsp;&emsp;\raw\significant bits.

\h3\packSnorm4x8() function\h3\
\raw\#### <code>glm.<code>**packSnorm4x8**(**v**: *vec4*) -\\> *int*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, converts each component of the normalized floating-point value \code\v\code\ into 8- or 16-bit
\raw\&emsp;&emsp;\raw\integer values. Then, the results are packed into the returned 32-bit unsigned integer.
\raw\&emsp;&emsp;\raw\The conversion for component \code\c\code\ of \code\v\code\ to fixed point is done as follows :
\raw\&emsp;&emsp;\raw\\code\round(clamp(c, -1, +1) * 127.0)\code\. The first component of the vector will be written to
\raw\&emsp;&emsp;\raw\the least significant bits of the output; the last component will be written to the most
\raw\&emsp;&emsp;\raw\significant bits.

\h3\packUnorm2x16() function\h3\
\raw\#### <code>glm.<code>**packUnorm2x16**(**v**: *vec2*) -\\> *int*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, converts each component of the normalized floating-point value \code\v\code\ into 8- or 16-bit
\raw\&emsp;&emsp;\raw\integer values. Then, the results are packed into the returned 32-bit unsigned integer.
\raw\&emsp;&emsp;\raw\The conversion for component \code\c\code\ of \code\v\code\ to fixed point is done as follows :
\raw\&emsp;&emsp;\raw\\code\round(clamp(c, 0, +1) * 65535.0)\code\. The first component of the vector will be written to the
\raw\&emsp;&emsp;\raw\least significant bits of the output; the last component will be written to the most
\raw\&emsp;&emsp;\raw\significant bits.

\h3\packUnorm4x8() function\h3\
\raw\#### <code>glm.<code>**packUnorm4x8**(**v**: *vec4*) -\\> *int*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, converts each component of the normalized floating-point value \code\v\code\ into 8- or 16-bit
\raw\&emsp;&emsp;\raw\integer values. Then, the results are packed into the returned 32-bit unsigned integer.
\raw\&emsp;&emsp;\raw\The conversion for component \code\c\code\ of \code\v\code\ to fixed point is done as follows :
\raw\&emsp;&emsp;\raw\\code\round(clamp(c, 0, +1) * 255.0)\code\. The first component of the vector will be written to the
\raw\&emsp;&emsp;\raw\least significant bits of the output; the last component will be written to the most
\raw\&emsp;&emsp;\raw\significant bits.

\h3\unpackDouble2x32() function\h3\
\raw\#### <code>glm.<code>**unpackDouble2x32**(**v**: *double*) -\\> *uvec2*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Returns a two-component unsigned integer vector representation of \code\v\code\. The bit-level
\raw\&emsp;&emsp;\raw\representation of \code\v\code\ is preserved. The first component of the vector contains the 32 least
\raw\&emsp;&emsp;\raw\significant bits of the double; the second component consists the 32 most significant bits.

\h3\unpackHalf2x16() function\h3\
\raw\#### <code>glm.<code>**unpackHalf2x16**(**v**: *int*) -\\> *vec2*</code></code>\raw\
\raw\&emsp;&emsp;\raw\Returns a two-component floating-point vector with components obtained by unpacking a
\raw\&emsp;&emsp;\raw\32-bit unsigned integer into a pair of 16-bit values, interpreting those values as 16-bit
\raw\&emsp;&emsp;\raw\floating-point numbers according to the OpenGL Specification, and converting them to 32-bit
\raw\&emsp;&emsp;\raw\floating-point values. The first component of the vector is obtained from the 16
\raw\&emsp;&emsp;\raw\least-significant bits of \code\v\code\; the second component is obtained from the 16
\raw\&emsp;&emsp;\raw\most-significant bits of \code\v\code\.

\h3\unpackSnorm2x16() function\h3\
\raw\#### <code>glm.<code>**unpackSnorm2x16**(**p**: *int*) -\\> *vec2*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, unpacks a single 32-bit unsigned integer \code\p\code\ into a pair of 16-bit unsigned integers,
\raw\&emsp;&emsp;\raw\four 8-bit unsigned integers, or four 8-bit signed integers. Then, each component is
\raw\&emsp;&emsp;\raw\converted to a normalized floating-point value to generate the returned two- or
\raw\&emsp;&emsp;\raw\four-component vector. The conversion for unpacked fixed-point value \code\f\code\ to floating point
\raw\&emsp;&emsp;\raw\is done as follows : \code\clamp(f / 32767.0, -1, +1)\code\. The first component of
\raw\&emsp;&emsp;\raw\the returned vector will be extracted from the least significant bits of the input; the
\raw\&emsp;&emsp;\raw\last component will be extracted from the most significant bits.

\h3\unpackSnorm4x8() function\h3\
\raw\#### <code>glm.<code>**unpackSnorm4x8**(**p**: *int*) -\\> *vec4*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, unpacks a single 32-bit unsigned integer \code\p\code\ into a pair of 16-bit unsigned integers,
\raw\&emsp;&emsp;\raw\four 8-bit unsigned integers, or four 8-bit signed integers. Then, each component is
\raw\&emsp;&emsp;\raw\converted to a normalized floating-point value to generate the returned two- or
\raw\&emsp;&emsp;\raw\four-component vector. The conversion for unpacked fixed-point value \code\f\code\ to floating point
\raw\&emsp;&emsp;\raw\is done as follows : \code\clamp(f / 127.0, -1, +1)\code\. The first component of the
\raw\&emsp;&emsp;\raw\returned vector will be extracted from the least significant bits of the input; the last
\raw\&emsp;&emsp;\raw\component will be extracted from the most significant bits.

\h3\unpackUnorm2x16() function\h3\
\raw\#### <code>glm.<code>**unpackUnorm2x16**(**p**: *int*) -\\> *vec2*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, unpacks a single 32-bit unsigned integer \code\p\code\ into a pair of 16-bit unsigned integers,
\raw\&emsp;&emsp;\raw\four 8-bit unsigned integers, or four 8-bit signed integers. Then, each component is
\raw\&emsp;&emsp;\raw\converted to a normalized floating-point value to generate the returned two- or
\raw\&emsp;&emsp;\raw\four-component vector. The conversion for unpacked fixed-point value \code\f\code\ to floating point
\raw\&emsp;&emsp;\raw\is done as follows : \code\f / 65535.0\code\. The first component of the returned
\raw\&emsp;&emsp;\raw\vector will be extracted from the least significant bits of the input; the last component
\raw\&emsp;&emsp;\raw\will be extracted from the most significant bits.

\h3\unpackUnorm4x8() function\h3\
\raw\#### <code>glm.<code>**unpackUnorm4x8**(**p**: *int*) -\\> *vec4*</code></code>\raw\
\raw\&emsp;&emsp;\raw\First, unpacks a single 32-bit unsigned integer \code\p\code\ into a pair of 16-bit unsigned integers,
\raw\&emsp;&emsp;\raw\four 8-bit unsigned integers, or four 8-bit signed integers. Then, each component is
\raw\&emsp;&emsp;\raw\converted to a normalized floating-point value to generate the returned two- or
\raw\&emsp;&emsp;\raw\four-component vector. The conversion for unpacked fixed-point value \code\f\code\ to floating point
\raw\&emsp;&emsp;\raw\is done as follows : \code\f / 255.0\code\. The first component of the returned vector
\raw\&emsp;&emsp;\raw\will be extracted from the least significant bits of the input; the last component will be
\raw\&emsp;&emsp;\raw\extracted from the most significant bits.