1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
\c\This file was generated using a tool\c\
\h1\compatibility methods\h1\
The following methods are all part of the \b\compatibility methods\b\.
Provide functions to increase the compatibility with Cg and HLSL languages.
\h2\Table of contents\h2\
\ul\
\-\\url #atan2-function\\b\atan2\b\ function\url\
\-\\url #isfinite-function\\b\isfinite\b\ function\url\
\-\\url #lerp-function\\b\lerp\b\ function\url\
\-\\url #saturate-function\\b\saturate\b\ function\url\
\ul\
\h3\atan2() function\h3\
\raw\#### <code>glm.<code>**atan2**(**y**: *float*, **x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Arc tangent. Returns an angle whose tangent is \code\y / x\code\. The signs of \code\x\code\ and \code\y\code\ are used to
\raw\  \raw\determine what quadrant the angle is in. The range of values returned by this function
\raw\  \raw\is \code\[-PI, PI]\code\. Results are undefined if \code\x\code\ and \code\y\code\ are both \code\0\code\.
\raw\  \raw\Alias for \code\atan\code\.
\raw\#### <code>glm.<code>**atan2**(**y**: *vecN*, **x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\atan(y[i], x[i])\code\ for every index \code\i\code\.
\raw\  \raw\Alias for \code\atan\code\.
\h3\isfinite() function\h3\
\raw\#### <code>glm.<code>**isfinite**(**x**: *float*) -\\> *bool*</code></code>\raw\
\raw\  \raw\Test whether or not a scalar is a finite value.
\raw\#### <code>glm.<code>**isfinite**(**x**: *vecN*) -\\> *bvecN*</code></code>\raw\
\raw\  \raw\Test whether or not each vector component is a finite value.
\h3\lerp() function\h3\
\raw\#### <code>glm.<code>**lerp**(**x**: *float*, **y**: *float*, **a**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the
\raw\  \raw\floating-point value \code\a\code\. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**lerp**(**x**: *vecN*, **y**: *vecN*, **a**: *float*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the
\raw\  \raw\floating-point value \code\a\code\. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**lerp**(**x**: *vecN*, **y**: *vecN*, **a**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\x * (1.0 - a) + y * a\code\, i.e., the linear blend of \code\x\code\ and \code\y\code\ using the
\raw\  \raw\vector \code\a\code\. The value for \code\a\code\ is not restricted to the range \code\[0, 1]\code\.
\raw\#### <code>glm.<code>**lerp**(**x**: *quat*, **y**: *quat*, **a**: *float*) -\\> *quat*</code></code>\raw\
\raw\  \raw\Linear interpolation of two quaternions. The interpolation is oriented.
\h3\saturate() function\h3\
\raw\#### <code>glm.<code>**saturate**(**x**: *float*) -\\> *float*</code></code>\raw\
\raw\  \raw\Returns \code\clamp(x, 0, 1)\code\.
\raw\#### <code>glm.<code>**saturate**(**x**: *vecN*) -\\> *vecN*</code></code>\raw\
\raw\  \raw\Returns \code\clamp(x, 0, 1)\code\.
|