File: func_matrix.h

package info (click to toggle)
python-pyglm 2.8.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,008 kB
  • sloc: cpp: 53,029; python: 3,683; makefile: 7
file content (148 lines) | stat: -rw-r--r-- 6,318 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#pragma once

#include "../../compiler_setup.h"

#include "../../types/all.h"

#include "../../internal_functions/all.h"

#include "../function_generator_macros.h"

PyDoc_STRVAR(outerProduct_docstr,
	"outerProduct(c: vecC, r: vecR) -> matRxC\n"
	"	Treats the first parameter `c` as a column vector and the second parameter `r` as a row vector\n"
	"	and does a linear algebraic matrix multiply `c * r`."
);
static PyObject*
outerProduct_(PyObject*, PyObject* args) {
	PyObject *arg1, *arg2;
	PyGLM_Arg_Unpack_2O(args, "outerProduct", arg1, arg2);
	PyGLM_PTI_Init0(arg1, PyGLM_T_VEC | PyGLM_SHAPE_2 | PyGLM_SHAPE_3 | PyGLM_SHAPE_4 | PyGLM_DT_FD);
	PyGLM_PTI_Init1(arg2, PyGLM_T_VEC | PyGLM_SHAPE_2 | PyGLM_SHAPE_3 | PyGLM_SHAPE_4 | PyGLM_DT_FD);
	if (PyGLM_Vec_PTI_Check0(2, float, arg1) && PyGLM_Vec_PTI_Check1(2, float, arg2)) {
		glm::vec2 o = PyGLM_Vec_PTI_Get0(2, float, arg1);
		glm::vec2 o2 = PyGLM_Vec_PTI_Get1(2, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(2, float, arg1) && PyGLM_Vec_PTI_Check1(3, float, arg2)) {
		glm::vec2 o = PyGLM_Vec_PTI_Get0(2, float, arg1);
		glm::vec3 o2 = PyGLM_Vec_PTI_Get1(3, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(2, float, arg1) && PyGLM_Vec_PTI_Check1(4, float, arg2)) {
		glm::vec2 o = PyGLM_Vec_PTI_Get0(2, float, arg1);
		glm::vec4 o2 = PyGLM_Vec_PTI_Get1(4, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, float, arg1) && PyGLM_Vec_PTI_Check1(2, float, arg2)) {
		glm::vec3 o = PyGLM_Vec_PTI_Get0(3, float, arg1);
		glm::vec2 o2 = PyGLM_Vec_PTI_Get1(2, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, float, arg1) && PyGLM_Vec_PTI_Check1(3, float, arg2)) {
		glm::vec3 o = PyGLM_Vec_PTI_Get0(3, float, arg1);
		glm::vec3 o2 = PyGLM_Vec_PTI_Get1(3, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, float, arg1) && PyGLM_Vec_PTI_Check1(4, float, arg2)) {
		glm::vec3 o = PyGLM_Vec_PTI_Get0(3, float, arg1);
		glm::vec4 o2 = PyGLM_Vec_PTI_Get1(4, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, float, arg1) && PyGLM_Vec_PTI_Check1(2, float, arg2)) {
		glm::vec4 o = PyGLM_Vec_PTI_Get0(4, float, arg1);
		glm::vec2 o2 = PyGLM_Vec_PTI_Get1(2, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, float, arg1) && PyGLM_Vec_PTI_Check1(3, float, arg2)) {
		glm::vec4 o = PyGLM_Vec_PTI_Get0(4, float, arg1);
		glm::vec3 o2 = PyGLM_Vec_PTI_Get1(3, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, float, arg1) && PyGLM_Vec_PTI_Check1(4, float, arg2)) {
		glm::vec4 o = PyGLM_Vec_PTI_Get0(4, float, arg1);
		glm::vec4 o2 = PyGLM_Vec_PTI_Get1(4, float, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(2, double, arg1) && PyGLM_Vec_PTI_Check1(2, double, arg2)) {
		glm::dvec2 o = PyGLM_Vec_PTI_Get0(2, double, arg1);
		glm::dvec2 o2 = PyGLM_Vec_PTI_Get1(2, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(2, double, arg1) && PyGLM_Vec_PTI_Check1(3, double, arg2)) {
		glm::dvec2 o = PyGLM_Vec_PTI_Get0(2, double, arg1);
		glm::dvec3 o2 = PyGLM_Vec_PTI_Get1(3, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(2, double, arg1) && PyGLM_Vec_PTI_Check1(4, double, arg2)) {
		glm::dvec2 o = PyGLM_Vec_PTI_Get0(2, double, arg1);
		glm::dvec4 o2 = PyGLM_Vec_PTI_Get1(4, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, double, arg1) && PyGLM_Vec_PTI_Check1(2, double, arg2)) {
		glm::dvec3 o = PyGLM_Vec_PTI_Get0(3, double, arg1);
		glm::dvec2 o2 = PyGLM_Vec_PTI_Get1(2, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, double, arg1) && PyGLM_Vec_PTI_Check1(3, double, arg2)) {
		glm::dvec3 o = PyGLM_Vec_PTI_Get0(3, double, arg1);
		glm::dvec3 o2 = PyGLM_Vec_PTI_Get1(3, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(3, double, arg1) && PyGLM_Vec_PTI_Check1(4, double, arg2)) {
		glm::dvec3 o = PyGLM_Vec_PTI_Get0(3, double, arg1);
		glm::dvec4 o2 = PyGLM_Vec_PTI_Get1(4, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, double, arg1) && PyGLM_Vec_PTI_Check1(2, double, arg2)) {
		glm::dvec4 o = PyGLM_Vec_PTI_Get0(4, double, arg1);
		glm::dvec2 o2 = PyGLM_Vec_PTI_Get1(2, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, double, arg1) && PyGLM_Vec_PTI_Check1(3, double, arg2)) {
		glm::dvec4 o = PyGLM_Vec_PTI_Get0(4, double, arg1);
		glm::dvec3 o2 = PyGLM_Vec_PTI_Get1(3, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	if (PyGLM_Vec_PTI_Check0(4, double, arg1) && PyGLM_Vec_PTI_Check1(4, double, arg2)) {
		glm::dvec4 o = PyGLM_Vec_PTI_Get0(4, double, arg1);
		glm::dvec4 o2 = PyGLM_Vec_PTI_Get1(4, double, arg2);
		return pack(glm::outerProduct(o, o2));
	}
	PyGLM_TYPEERROR_2O("invalid argument type(s) for outerProduct(): ", arg1, arg2);
	return NULL;
}

PyDoc_STRVAR(matrixCompMult_docstr,
	"matrixCompMult(x: matNxM, y: matNxM) -> matNxM\n"
	"	Multiply matrix `x` by matrix `y` component-wise, i.e., `result[i][j]` is the scalar product of\n"
	"	`x[i][j]` and `y[i][j]`."
);
PyGLM_MAKE_GLM_FUNC_MM__tfF(matrixCompMult)

PyDoc_STRVAR(transpose_docstr,
	"transpose(x: matNxM) -> matMxN\n"
	"	Returns the transposed matrix of `x`."
);
PyGLM_MAKE_GLM_FUNC_M(transpose)

PyDoc_STRVAR(determinant_docstr,
	"determinant(m: matSxS) -> float\n"
	"	Return the determinant of a squared matrix."
);
PyGLM_MAKE_GLM_FUNC_S__tfF(determinant)

PyDoc_STRVAR(inverse_docstr,
	"inverse(m: matSxS) -> matSxS\n"
	"	Return the inverse of a squared matrix.\n"
	"inverse(q: quat) -> quat\n"
	"	Return the inverse of a quaternion."
);
PyGLM_MAKE_GLM_FUNC_S_Q__tfF(inverse)

#define FUNC_MATRIX_METHODS \
{ "matrixCompMult", (PyCFunction)matrixCompMult_, METH_VARARGS, matrixCompMult_docstr }, \
{ "outerProduct", (PyCFunction)outerProduct_, METH_VARARGS, outerProduct_docstr }, \
{ "transpose", (PyCFunction)transpose_, METH_O, transpose_docstr }, \
{ "determinant", (PyCFunction)determinant_, METH_O, determinant_docstr }, \
{ "inverse", (PyCFunction)inverse_, METH_O, inverse_docstr }