1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
"""
Example illustrating the application of MBAR to compute a 1D free energy profile
from a series of force-clamp single-molecule experiments.
REFERENCE
Woodside MT, Behnke-Parks WL, Larizadeh K, Travers K, Herschlag D, and Block SM.
Nanomechanical measurements of the sequence-dependent folding landscapes of single
nucleic acid hairpins. PNAS 103:6190, 2006.
"""
# =============================================================================================
# IMPORTS
# =============================================================================================
import subprocess
import time
from pathlib import Path
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import pymbar # multistate Bennett acceptance ratio analysis (provided by pymbar)
from pymbar import timeseries, FES # timeseries analysis (provided by pymbar)
# =============================================================================================
# PARAMETERS
# =============================================================================================
prefix = "20R55_4T" # for paper
# prefix = '10R50_4T'
# prefix = '25R50_4T'
# prefix = '30R50_4T'
directory = Path("processed-data")
temperature = 296.15 # temperature (in K)
nbins = 50 # number of bins for 1D FES
output_directory = Path("output")
plot_directory = Path("plots")
# =============================================================================================
# CONSTANTS
# =============================================================================================
kB = 1.381e-23 # Boltzmann constant (in J/K)
pN_nm_to_kT = (1.0e-9) * (1.0e-12) / (kB * temperature) # conversion from nM pN to units of kT
# =============================================================================================
# SUBROUTINES
# =============================================================================================
def construct_nonuniform_bins(x_n, nbins):
"""Construct histogram using bins of unequal size to ensure approximately equal population in each bin.
Parameters
----------
x_n : 1D array of float
x_n[n] is data point n
Returns
-------
bin_left_boundary_i : 1D array of floats
data in bin i will satisfy bin_left_boundary_i[i] <= x < bin_left_boundary_i[i+1]
bin_center_i : 1D array of floats
bin_center_i[i] is the center of bin i
bin_width_i : 1D array of floats
bin_width_i[i] is the width of bin i
bin_n : 1D array of int32
bin_n[n] is the bin index (in range(nbins)) of x_n[n]
"""
# Determine number of samples.
N = x_n.size
# Get indices of elements of x_n sorted in order.
sorted_indices = x_n.argsort()
# Allocate storage for results.
bin_left_boundary_i = np.zeros([nbins + 1])
bin_center_i = np.zeros([nbins])
bin_width_i = np.zeros([nbins])
bin_n = np.zeros([N])
# Determine sampled range, adding a little bit to the rightmost range to ensure no samples escape the range.
x_min = x_n.min()
x_max = x_n.max()
x_max += (x_max - x_min) * 1.0e-5
# Determine bin boundaries and bin assignments.
for bin_index in range(nbins):
# indices of first and last data points in this span
first_index = int(float(N) / float(nbins) * float(bin_index))
last_index = int(float(N) / float(nbins) * float(bin_index + 1))
# store left bin boundary
bin_left_boundary_i[bin_index] = x_n[sorted_indices[first_index]]
# store assignments
bin_n[sorted_indices[first_index:last_index]] = bin_index
# set rightmost boundary
bin_left_boundary_i[nbins] = x_max
# Determine bin centers and widths
for bin_index in range(nbins):
bin_center_i[bin_index] = (
bin_left_boundary_i[bin_index] + bin_left_boundary_i[bin_index + 1]
) / 2.0
bin_width_i[bin_index] = (
bin_left_boundary_i[bin_index + 1] - bin_left_boundary_i[bin_index]
)
return bin_left_boundary_i, bin_center_i, bin_width_i, bin_n
# =============================================================================================
# MAIN
# =============================================================================================
def main():
# read biasing forces for different trajectories
filename = directory / f"{prefix}.forces"
with open(filename) as infile:
elements = infile.readline().split()
K = len(elements) # number of biasing forces
# biasing_force_k[k] is the constant external biasing force used to collect trajectory k (in pN)
biasing_force_k = np.zeros([K])
for k in range(K):
biasing_force_k[k] = float(elements[k])
print("biasing forces (in pN) = ", biasing_force_k)
# Determine maximum number of snapshots in all trajectories.
filename = directory / f"{prefix}.trajectories"
T_max = 0
with open(filename) as f:
for line in f:
T_max += 1
# Allocate storage for original (correlated) trajectories
T_k = np.zeros([K], int) # T_k[k] is the number of snapshots from umbrella simulation k`
# x_kt[k,t] is the position of snapshot t from trajectory k (in nm)
x_kt = np.zeros([K, T_max])
# Read the trajectories.
filename = directory / f"{prefix}.trajectories"
print(f"Reading {filename}...")
with open(filename) as infile:
for line in infile:
elements = line.split()
for k in range(K):
t = T_k[k]
x_kt[k, t] = float(elements[k])
T_k[k] += 1
# Create a list of indices of all configurations in kt-indexing.
mask_kt = np.zeros([K, T_max], dtype=bool)
for k in range(K):
mask_kt[k, 0 : T_k[k]] = True
# Create a list from this mask.
all_data_indices = np.where(mask_kt)
# Construct equal-frequency extension bins
print("binning data...")
bin_kt = np.zeros([K, T_max], int)
bin_left_boundary_i, bin_center_i, bin_width_i, bin_assignments = construct_nonuniform_bins(
x_kt[all_data_indices], nbins
)
bin_kt[all_data_indices] = bin_assignments
# Compute correlation times.
N_max = 0
g_k = np.zeros([K])
for k in range(K):
# Compute statistical inefficiency for extension timeseries
g = timeseries.statistical_inefficiency(x_kt[k, 0 : T_k[k]], x_kt[k, 0 : T_k[k]])
# store statistical inefficiency
g_k[k] = g
print(
f"timeseries {k + 1:d} : g = {g:.1f}, {int(np.floor(T_k[k] / g)):.0f} "
f"uncorrelated samples (of {T_k[k]:d} total samples)"
)
N_max = max(N_max, int(np.ceil(T_k[k] / g)) + 1)
# Subsample trajectory position data.
x_kn = np.zeros([K, N_max])
bin_kn = np.zeros([K, N_max])
N_k = np.zeros([K], int)
for k in range(K):
# Compute correlation times for potential energy and chi timeseries.
indices = timeseries.subsample_correlated_data(x_kt[k, 0 : T_k[k]])
# Store subsampled positions.
N_k[k] = len(indices)
x_kn[k, 0 : N_k[k]] = x_kt[k, indices]
bin_kn[k, 0 : N_k[k]] = bin_kt[k, indices]
# Set arbitrarynp.zeros for external biasing potential.
x0_k = np.zeros([K]) # x position corresponding to zero of potential
for k in range(K):
x0_k[k] = x_kn[k, 0 : N_k[k]].mean()
print("x0_k = ", x0_k)
# Compute bias energies in units of kT.
# u_kln[k,l,n] is the reduced (dimensionless) relative potential energy of
# snapshot n from umbrella simulation k evaluated at umbrella l
u_kln = np.zeros([K, K, N_max])
for k in range(K):
for l in range(K):
# compute relative energy difference from sampled state to each other state
# U_k(x) = F_k x
# where F_k is external biasing force
# (F_k pN) (x nm) (pN /
# u_kln[k,l,0:N_k[k]] = - pN_nm_to_kT * (biasing_force_k[l] - biasing_force_k[k]) * x_kn[k,0:N_k[k]]
u_kln[k, l, 0 : N_k[k]] = -pN_nm_to_kT * biasing_force_k[l] * (
x_kn[k, 0 : N_k[k]] - x0_k[l]
) + pN_nm_to_kT * biasing_force_k[k] * (x_kn[k, 0 : N_k[k]] - x0_k[k])
# DEBUG
start_time = time.time()
# Initialize MBAR.
print("Running MBAR...")
# TODO: change to u_kn inputs
mbar = pymbar.MBAR(
u_kln, N_k, verbose=True, relative_tolerance=1.0e-10, solver_protocol="robust"
)
# Compute unbiased energies (all biasing forces are zero).
# u_n[n] is the reduced potential energy without umbrella restraints of snapshot n
u_n = np.zeros([np.sum(N_k)])
x_n = np.zeros([np.sum(N_k)])
Nstart = 0
for k in range(K):
# u_n[N_k[k]:N_k[k+1]] = - pN_nm_to_kT * (0.0 - biasing_force_k[k]) * x_kn[k,0:N_k[k]]
u_n[Nstart : Nstart + N_k[k]] = 0.0 + pN_nm_to_kT * biasing_force_k[k] * (
x_kn[k, 0 : N_k[k]] - x0_k[k]
)
x_n[Nstart : Nstart + N_k[k]] = x_kn[k, 0 : N_k[k]]
Nstart += N_k[k]
# Compute free energy profile in unbiased potential (in units of kT).
print("Computing free energy profile...")
fes = FES(u_kln, N_k, mbar_options=dict(solver_protocol="robust"))
histogram_parameters = dict()
# 1D array of parameters, one entry because 1D
histogram_parameters["bin_edges"] = bin_left_boundary_i
fes.generate_fes(u_n, x_n, histogram_parameters=histogram_parameters)
results = fes.get_fes(
bin_center_i, reference_point="from-lowest", uncertainty_method="analytical"
)
f_i = results["f_i"]
df_i = results["df_i"]
# compute estimate of FES including Jacobian term
fes_i = f_i + np.log(bin_width_i)
# Write out unbiased estimate of FES
print("Unbiased FES (in units of kT)")
print(f"{'bin':>8s} {'f':>8s} {'df':>8s} {'fes':>8s} {'width':>8s}")
for i in range(nbins):
print(
f"{bin_center_i[i]:8.3f}",
f"{f_i[i]:8.3f}",
f"{df_i[i]:8.3f}",
f"{fes_i[i]:8.3f}",
f"{bin_width_i[i]:8.3f}",
)
filename = output_directory / "fes-unbiased.out"
with open(filename, "w") as outfile:
for i in range(nbins):
outfile.write(f"{bin_center_i[i]:8.3f} {fes_i[i]:8.3f} {df_i[i]:8.3f}\n")
fig_filename = plot_directory / f"fes-unbiased.pdf"
fig, ax = plt.subplots()
ax.errorbar(bin_center_i, fes_i, yerr=df_i, fmt="_ ", elinewidth=0.3)
ax.set_title("Unbiased estimate of free energy profile")
ax.set_ylabel("Free energy profile of mean force (kT)")
ax.set_xlabel("Extension (nm)")
fig.savefig(fig_filename)
# DEBUG
stop_time = time.time()
elapsed_time = stop_time - start_time
print(f"analysis took {elapsed_time:f} seconds")
# compute observed and expected histograms at each state
for l in range(K):
# compute FES at state l
Nstart = 0
for k in range(K):
u_n[Nstart : Nstart + N_k[k]] = u_kln[k, l, 0 : N_k[k]]
Nstart += N_k[k]
fes.generate_fes(u_n, x_n, histogram_parameters=histogram_parameters)
results = fes.get_fes(
bin_center_i, reference_point="from-lowest", uncertainty_method="analytical"
)
f_i = results["f_i"]
df_i = results["df_i"]
# compute estimate of FES including Jacobian term
fes_i = f_i + np.log(bin_width_i)
# center fes
fes_i -= fes_i.mean()
# compute probability distribution
p_i = np.exp(-f_i + f_i.min())
p_i /= p_i.sum()
# compute observed histograms, filtering to within [x_min,x_max] range
N_i_observed = np.zeros([nbins])
dN_i_observed = np.zeros([nbins])
for t in range(T_k[l]):
bin_index = bin_kt[l, t]
N_i_observed[bin_index] += 1
N = N_i_observed.sum()
# estimate uncertainties in observed counts
for bin_index in range(nbins):
dN_i_observed[bin_index] = np.sqrt(
g_k[l] * N_i_observed[bin_index] * (1.0 - N_i_observed[bin_index] / float(N))
)
# compute expected histograms
N_i_expected = float(N) * p_i
# only approximate, since correlations df_i df_j are neglected
dN_i_expected = np.sqrt(float(N) * p_i * (1.0 - p_i))
# plot
print(f"state {l:d} ({biasing_force_k[l]:f} pN)")
for bin_index in range(nbins):
print(
f"{bin_center_i[bin_index]:8.3f}",
f"{N_i_expected[bin_index]:10f}",
f"{N_i_observed[bin_index]:10f} +- {dN_i_observed[bin_index]:10f}",
)
# Write out observed bin counts
filename = output_directory / f"counts-observed-{l:d}.out"
with open(filename, "w") as outfile:
for i in range(nbins):
outfile.write(
f"{bin_center_i[i]:8.3f} {N_i_observed[i]:16f} {dN_i_observed[i]:16f}\n"
)
# write out expected bin counts
filename = output_directory / f"counts-expected-{l:d}.out"
with open(filename, "w") as outfile:
for i in range(nbins):
outfile.write(
f"{bin_center_i[i]:8.3f} {N_i_expected[i]:16f} {dN_i_expected[i]:16f}\n"
)
# compute FES from observed counts
indices = np.where(N_i_observed > 0)[0]
fes_i_observed = np.zeros([nbins])
dfes_i_observed = np.zeros([nbins])
fes_i_observed[indices] = -np.log(N_i_observed[indices]) + np.log(bin_width_i[indices])
fes_i_observed[indices] -= fes_i_observed[indices].mean() # shift observed FES
dfes_i_observed[indices] = dN_i_observed[indices] / N_i_observed[indices]
# write out observed FES
filename = output_directory / f"fes-observed-{l:d}.out"
with open(filename, "w") as outfile:
for i in indices:
outfile.write(
f"{bin_center_i[i]:8.3f} {fes_i_observed[i]:8.3f} {dfes_i_observed[i]:8.3f}\n"
)
# Write out unbiased estimate of FES
fes_i -= fes_i[indices].mean() # shift to align with observed
filename = output_directory / f"fes-expected-{l:d}.out"
with open(filename, "w") as outfile:
for i in range(nbins):
outfile.write(f"{bin_center_i[i]:8.3f} {fes_i[i]:8.3f} {df_i[i]:8.3f}\n")
# make plots
biasing_force = biasing_force_k[l]
fig_filename = plot_directory / f"fes-comparison-{l:d}.pdf"
fig, ax = plt.subplots()
ax.errorbar(
bin_center_i, fes_i, yerr=df_i, fmt="x ", elinewidth=0.3, label="MBAR optimal estimate"
)
ax.errorbar(
bin_center_i,
fes_i_observed,
yerr=dfes_i_observed,
fmt="x ",
elinewidth=0.3,
label="Observed from single experiment",
)
ax.set_title(f"{prefix.title()} - {biasing_force:.2f} pN")
ax.set_ylabel("Free energy of profile (kT)")
ax.set_xlabel("Extension (nm)")
ax.legend()
fig.savefig(fig_filename)
if __name__ == "__main__":
main()
|