File: force-bias-optical-trap.py

package info (click to toggle)
python-pymbar 4.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,972 kB
  • sloc: python: 8,566; makefile: 149; perl: 52; sh: 46
file content (398 lines) | stat: -rw-r--r-- 15,253 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""
Example illustrating the application of MBAR to compute a 1D free energy profile 
from a series of force-clamp single-molecule experiments.

REFERENCE

    Woodside MT, Behnke-Parks WL, Larizadeh K, Travers K, Herschlag D, and Block SM.
    Nanomechanical measurements of the sequence-dependent folding landscapes of single
    nucleic acid hairpins. PNAS 103:6190, 2006.

"""

# =============================================================================================
# IMPORTS
# =============================================================================================
import subprocess
import time
from pathlib import Path

import numpy as np
import matplotlib

matplotlib.use("Agg")
import matplotlib.pyplot as plt

import pymbar  # multistate Bennett acceptance ratio analysis (provided by pymbar)
from pymbar import timeseries, FES  # timeseries analysis (provided by pymbar)

# =============================================================================================
# PARAMETERS
# =============================================================================================

prefix = "20R55_4T"  # for paper
# prefix = '10R50_4T'
# prefix = '25R50_4T'
# prefix = '30R50_4T'
directory = Path("processed-data")
temperature = 296.15  # temperature (in K)
nbins = 50  # number of bins for 1D FES
output_directory = Path("output")
plot_directory = Path("plots")

# =============================================================================================
# CONSTANTS
# =============================================================================================

kB = 1.381e-23  # Boltzmann constant (in J/K)
pN_nm_to_kT = (1.0e-9) * (1.0e-12) / (kB * temperature)  # conversion from nM pN to units of kT

# =============================================================================================
# SUBROUTINES
# =============================================================================================


def construct_nonuniform_bins(x_n, nbins):
    """Construct histogram using bins of unequal size to ensure approximately equal population in each bin.

    Parameters
    ----------
    x_n : 1D array of float
        x_n[n] is data point n

    Returns
    -------
    bin_left_boundary_i : 1D array of floats
        data in bin i will satisfy bin_left_boundary_i[i] <= x < bin_left_boundary_i[i+1]
    bin_center_i : 1D array of floats
        bin_center_i[i] is the center of bin i
    bin_width_i : 1D array of floats
        bin_width_i[i] is the width of bin i
    bin_n : 1D array of int32
        bin_n[n] is the bin index (in range(nbins)) of x_n[n]
    """

    # Determine number of samples.
    N = x_n.size

    # Get indices of elements of x_n sorted in order.
    sorted_indices = x_n.argsort()

    # Allocate storage for results.
    bin_left_boundary_i = np.zeros([nbins + 1])
    bin_center_i = np.zeros([nbins])
    bin_width_i = np.zeros([nbins])
    bin_n = np.zeros([N])

    # Determine sampled range, adding a little bit to the rightmost range to ensure no samples escape the range.
    x_min = x_n.min()
    x_max = x_n.max()
    x_max += (x_max - x_min) * 1.0e-5

    # Determine bin boundaries and bin assignments.
    for bin_index in range(nbins):
        # indices of first and last data points in this span
        first_index = int(float(N) / float(nbins) * float(bin_index))
        last_index = int(float(N) / float(nbins) * float(bin_index + 1))

        # store left bin boundary
        bin_left_boundary_i[bin_index] = x_n[sorted_indices[first_index]]

        # store assignments
        bin_n[sorted_indices[first_index:last_index]] = bin_index

    # set rightmost boundary
    bin_left_boundary_i[nbins] = x_max

    # Determine bin centers and widths
    for bin_index in range(nbins):
        bin_center_i[bin_index] = (
            bin_left_boundary_i[bin_index] + bin_left_boundary_i[bin_index + 1]
        ) / 2.0
        bin_width_i[bin_index] = (
            bin_left_boundary_i[bin_index + 1] - bin_left_boundary_i[bin_index]
        )

    return bin_left_boundary_i, bin_center_i, bin_width_i, bin_n


# =============================================================================================
# MAIN
# =============================================================================================


def main():
    # read biasing forces for different trajectories
    filename = directory / f"{prefix}.forces"
    with open(filename) as infile:
        elements = infile.readline().split()
        K = len(elements)  # number of biasing forces
        # biasing_force_k[k] is the constant external biasing force used to collect trajectory k (in pN)
        biasing_force_k = np.zeros([K])
        for k in range(K):
            biasing_force_k[k] = float(elements[k])
    print("biasing forces (in pN) = ", biasing_force_k)

    # Determine maximum number of snapshots in all trajectories.
    filename = directory / f"{prefix}.trajectories"
    T_max = 0
    with open(filename) as f:
        for line in f:
            T_max += 1

    # Allocate storage for original (correlated) trajectories
    T_k = np.zeros([K], int)  # T_k[k] is the number of snapshots from umbrella simulation k`
    # x_kt[k,t] is the position of snapshot t from trajectory k (in nm)
    x_kt = np.zeros([K, T_max])

    # Read the trajectories.
    filename = directory / f"{prefix}.trajectories"
    print(f"Reading {filename}...")
    with open(filename) as infile:
        for line in infile:
            elements = line.split()
            for k in range(K):
                t = T_k[k]
                x_kt[k, t] = float(elements[k])
                T_k[k] += 1

    # Create a list of indices of all configurations in kt-indexing.
    mask_kt = np.zeros([K, T_max], dtype=bool)
    for k in range(K):
        mask_kt[k, 0 : T_k[k]] = True
    # Create a list from this mask.
    all_data_indices = np.where(mask_kt)

    # Construct equal-frequency extension bins
    print("binning data...")
    bin_kt = np.zeros([K, T_max], int)
    bin_left_boundary_i, bin_center_i, bin_width_i, bin_assignments = construct_nonuniform_bins(
        x_kt[all_data_indices], nbins
    )
    bin_kt[all_data_indices] = bin_assignments

    # Compute correlation times.
    N_max = 0
    g_k = np.zeros([K])
    for k in range(K):
        # Compute statistical inefficiency for extension timeseries
        g = timeseries.statistical_inefficiency(x_kt[k, 0 : T_k[k]], x_kt[k, 0 : T_k[k]])
        # store statistical inefficiency
        g_k[k] = g
        print(
            f"timeseries {k + 1:d} : g = {g:.1f}, {int(np.floor(T_k[k] / g)):.0f} "
            f"uncorrelated samples (of {T_k[k]:d} total samples)"
        )
        N_max = max(N_max, int(np.ceil(T_k[k] / g)) + 1)

    # Subsample trajectory position data.
    x_kn = np.zeros([K, N_max])
    bin_kn = np.zeros([K, N_max])
    N_k = np.zeros([K], int)
    for k in range(K):
        # Compute correlation times for potential energy and chi timeseries.
        indices = timeseries.subsample_correlated_data(x_kt[k, 0 : T_k[k]])
        # Store subsampled positions.
        N_k[k] = len(indices)
        x_kn[k, 0 : N_k[k]] = x_kt[k, indices]
        bin_kn[k, 0 : N_k[k]] = bin_kt[k, indices]

    # Set arbitrarynp.zeros for external biasing potential.
    x0_k = np.zeros([K])  # x position corresponding to zero of potential
    for k in range(K):
        x0_k[k] = x_kn[k, 0 : N_k[k]].mean()
    print("x0_k = ", x0_k)

    # Compute bias energies in units of kT.
    # u_kln[k,l,n] is the reduced (dimensionless) relative potential energy of
    # snapshot n from umbrella simulation k evaluated at umbrella l
    u_kln = np.zeros([K, K, N_max])
    for k in range(K):
        for l in range(K):
            # compute relative energy difference from sampled state to each other state
            # U_k(x) = F_k x
            # where F_k is external biasing force
            # (F_k pN) (x nm) (pN /
            # u_kln[k,l,0:N_k[k]] = - pN_nm_to_kT * (biasing_force_k[l] - biasing_force_k[k]) * x_kn[k,0:N_k[k]]
            u_kln[k, l, 0 : N_k[k]] = -pN_nm_to_kT * biasing_force_k[l] * (
                x_kn[k, 0 : N_k[k]] - x0_k[l]
            ) + pN_nm_to_kT * biasing_force_k[k] * (x_kn[k, 0 : N_k[k]] - x0_k[k])

    # DEBUG
    start_time = time.time()

    # Initialize MBAR.
    print("Running MBAR...")
    # TODO: change to u_kn inputs
    mbar = pymbar.MBAR(
        u_kln, N_k, verbose=True, relative_tolerance=1.0e-10, solver_protocol="robust"
    )

    # Compute unbiased energies (all biasing forces are zero).
    # u_n[n] is the reduced potential energy without umbrella restraints of snapshot n
    u_n = np.zeros([np.sum(N_k)])
    x_n = np.zeros([np.sum(N_k)])

    Nstart = 0
    for k in range(K):
        #    u_n[N_k[k]:N_k[k+1]] = - pN_nm_to_kT * (0.0 - biasing_force_k[k]) * x_kn[k,0:N_k[k]]
        u_n[Nstart : Nstart + N_k[k]] = 0.0 + pN_nm_to_kT * biasing_force_k[k] * (
            x_kn[k, 0 : N_k[k]] - x0_k[k]
        )
        x_n[Nstart : Nstart + N_k[k]] = x_kn[k, 0 : N_k[k]]
        Nstart += N_k[k]

    # Compute free energy profile in unbiased potential (in units of kT).

    print("Computing free energy profile...")
    fes = FES(u_kln, N_k, mbar_options=dict(solver_protocol="robust"))
    histogram_parameters = dict()
    # 1D array of parameters, one entry because 1D
    histogram_parameters["bin_edges"] = bin_left_boundary_i
    fes.generate_fes(u_n, x_n, histogram_parameters=histogram_parameters)
    results = fes.get_fes(
        bin_center_i, reference_point="from-lowest", uncertainty_method="analytical"
    )
    f_i = results["f_i"]
    df_i = results["df_i"]

    # compute estimate of FES including Jacobian term
    fes_i = f_i + np.log(bin_width_i)
    # Write out unbiased estimate of FES
    print("Unbiased FES (in units of kT)")
    print(f"{'bin':>8s} {'f':>8s} {'df':>8s} {'fes':>8s} {'width':>8s}")
    for i in range(nbins):
        print(
            f"{bin_center_i[i]:8.3f}",
            f"{f_i[i]:8.3f}",
            f"{df_i[i]:8.3f}",
            f"{fes_i[i]:8.3f}",
            f"{bin_width_i[i]:8.3f}",
        )

    filename = output_directory / "fes-unbiased.out"
    with open(filename, "w") as outfile:
        for i in range(nbins):
            outfile.write(f"{bin_center_i[i]:8.3f} {fes_i[i]:8.3f} {df_i[i]:8.3f}\n")

    fig_filename = plot_directory / f"fes-unbiased.pdf"
    fig, ax = plt.subplots()
    ax.errorbar(bin_center_i, fes_i, yerr=df_i, fmt="_ ", elinewidth=0.3)
    ax.set_title("Unbiased estimate of free energy profile")
    ax.set_ylabel("Free energy profile of mean force (kT)")
    ax.set_xlabel("Extension (nm)")
    fig.savefig(fig_filename)

    # DEBUG
    stop_time = time.time()
    elapsed_time = stop_time - start_time
    print(f"analysis took {elapsed_time:f} seconds")

    # compute observed and expected histograms at each state
    for l in range(K):
        # compute FES at state l
        Nstart = 0
        for k in range(K):
            u_n[Nstart : Nstart + N_k[k]] = u_kln[k, l, 0 : N_k[k]]
            Nstart += N_k[k]
        fes.generate_fes(u_n, x_n, histogram_parameters=histogram_parameters)
        results = fes.get_fes(
            bin_center_i, reference_point="from-lowest", uncertainty_method="analytical"
        )
        f_i = results["f_i"]
        df_i = results["df_i"]

        # compute estimate of FES including Jacobian term
        fes_i = f_i + np.log(bin_width_i)
        # center fes
        fes_i -= fes_i.mean()
        # compute probability distribution
        p_i = np.exp(-f_i + f_i.min())
        p_i /= p_i.sum()
        # compute observed histograms, filtering to within [x_min,x_max] range
        N_i_observed = np.zeros([nbins])
        dN_i_observed = np.zeros([nbins])
        for t in range(T_k[l]):
            bin_index = bin_kt[l, t]
            N_i_observed[bin_index] += 1
        N = N_i_observed.sum()
        # estimate uncertainties in observed counts
        for bin_index in range(nbins):
            dN_i_observed[bin_index] = np.sqrt(
                g_k[l] * N_i_observed[bin_index] * (1.0 - N_i_observed[bin_index] / float(N))
            )
        # compute expected histograms
        N_i_expected = float(N) * p_i
        # only approximate, since correlations df_i df_j are neglected
        dN_i_expected = np.sqrt(float(N) * p_i * (1.0 - p_i))
        # plot
        print(f"state {l:d} ({biasing_force_k[l]:f} pN)")
        for bin_index in range(nbins):
            print(
                f"{bin_center_i[bin_index]:8.3f}",
                f"{N_i_expected[bin_index]:10f}",
                f"{N_i_observed[bin_index]:10f} +- {dN_i_observed[bin_index]:10f}",
            )

        # Write out observed bin counts
        filename = output_directory / f"counts-observed-{l:d}.out"
        with open(filename, "w") as outfile:
            for i in range(nbins):
                outfile.write(
                    f"{bin_center_i[i]:8.3f} {N_i_observed[i]:16f} {dN_i_observed[i]:16f}\n"
                )

        # write out expected bin counts
        filename = output_directory / f"counts-expected-{l:d}.out"
        with open(filename, "w") as outfile:
            for i in range(nbins):
                outfile.write(
                    f"{bin_center_i[i]:8.3f} {N_i_expected[i]:16f} {dN_i_expected[i]:16f}\n"
                )

        # compute FES from observed counts
        indices = np.where(N_i_observed > 0)[0]
        fes_i_observed = np.zeros([nbins])
        dfes_i_observed = np.zeros([nbins])
        fes_i_observed[indices] = -np.log(N_i_observed[indices]) + np.log(bin_width_i[indices])
        fes_i_observed[indices] -= fes_i_observed[indices].mean()  # shift observed FES
        dfes_i_observed[indices] = dN_i_observed[indices] / N_i_observed[indices]
        # write out observed FES
        filename = output_directory / f"fes-observed-{l:d}.out"
        with open(filename, "w") as outfile:
            for i in indices:
                outfile.write(
                    f"{bin_center_i[i]:8.3f} {fes_i_observed[i]:8.3f} {dfes_i_observed[i]:8.3f}\n"
                )

        # Write out unbiased estimate of FES
        fes_i -= fes_i[indices].mean()  # shift to align with observed
        filename = output_directory / f"fes-expected-{l:d}.out"
        with open(filename, "w") as outfile:
            for i in range(nbins):
                outfile.write(f"{bin_center_i[i]:8.3f} {fes_i[i]:8.3f} {df_i[i]:8.3f}\n")

        # make plots
        biasing_force = biasing_force_k[l]
        fig_filename = plot_directory / f"fes-comparison-{l:d}.pdf"
        fig, ax = plt.subplots()
        ax.errorbar(
            bin_center_i, fes_i, yerr=df_i, fmt="x ", elinewidth=0.3, label="MBAR optimal estimate"
        )
        ax.errorbar(
            bin_center_i,
            fes_i_observed,
            yerr=dfes_i_observed,
            fmt="x ",
            elinewidth=0.3,
            label="Observed from single experiment",
        )
        ax.set_title(f"{prefix.title()} - {biasing_force:.2f} pN")
        ax.set_ylabel("Free energy of profile (kT)")
        ax.set_xlabel("Extension (nm)")
        ax.legend()
        fig.savefig(fig_filename)


if __name__ == "__main__":
    main()