1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
import numpy as np
import pytest
from pymbar import FES
from pymbar.utils import ParameterError
from pymbar.utils_for_testing import assert_almost_equal
try:
import sklearn # pylint: disable=unused-import
has_sklearn = True
except ImportError:
has_sklearn = False
beta = 1.0
z_scale_factor = 12.0
def generate_fes_data(ndim=1, nsamples=1000, K0=20.0, Ku=100.0, gridscale=0.2, xrange=None):
x0 = np.zeros([ndim]) # center of base potential
numbrellas = 1
nperdim = np.zeros([ndim], int)
if xrange is None:
xrange = [[-3, 3]] * ndim
for d in range(ndim):
nperdim[d] = xrange[d][1] - xrange[d][0] + 1
numbrellas *= nperdim[d]
# print("There are a total of {:d} umbrellas.".format(numbrellas))
# Enumerate umbrella centers, and compute the analytical free energy of that umbrella
# print("Constructing umbrellas...")
ksum = (Ku + K0) / beta
kprod = (Ku * K0) / (beta * beta)
f_k_analytical = np.zeros(numbrellas)
xu_i = np.zeros([numbrellas, ndim]) # xu_i[i,:] is the center of umbrella i
dp = np.zeros(ndim, int)
dp[0] = 1
for d in range(1, ndim):
dp[d] = nperdim[d] * dp[d - 1]
umbrella_zero = 0
for i in range(numbrellas):
center = []
for d in range(ndim):
val = gridscale * ((int(i // dp[d])) % nperdim[d] + xrange[d][0])
center.append(val)
center = np.array(center)
xu_i[i, :] = center
mu2 = np.dot(center, center)
f_k_analytical[i] = np.log(
(ndim * np.pi / ksum) ** (3.0 / 2.0) * np.exp(-kprod * mu2 / (2.0 * ksum))
)
if np.all(center == 0.0): # assumes that we have one state that is at the zero.
umbrella_zero = i
i += 1
f_k_analytical -= f_k_analytical[umbrella_zero]
# print("Generating {:d} samples for each of {:d} umbrellas...".format(nsamples, numbrellas))
x_n = np.zeros([numbrellas * nsamples, ndim])
for i in range(numbrellas):
for dim in range(ndim):
# Compute mu and sigma for this dimension for sampling from V0(x) + Vu(x).
# Product of Gaussians: N(x ; a, A) N(x ; b, B) = N(a ; b , A+B) x N(x ; c, C) where
# C = 1/(1/A + 1/B)
# c = C(a/A+b/B)
# A = 1/K0, B = 1/Ku
sigma = 1.0 / (K0 + Ku)
mu = sigma * (x0[dim] * K0 + xu_i[i, dim] * Ku)
# Generate normal deviates for this dimension.
x_n[i * nsamples : (i + 1) * nsamples, dim] = np.random.normal(
mu, np.sqrt(sigma), [nsamples]
)
u_kn = np.zeros([numbrellas, nsamples * numbrellas])
# Compute reduced potential due to V0.
u_n = beta * (K0 / 2) * np.sum((x_n[:, :] - x0) ** 2, axis=1)
for k in range(numbrellas):
uu = (
beta * (Ku / 2) * np.sum((x_n[:, :] - xu_i[k, :]) ** 2, axis=1)
) # reduced potential due to umbrella k
u_kn[k, :] = u_n + uu
fes_const = K0 / 2.0 # using a quadratic surface, so has same multpliciative value everywhere.
def bias_potential(x, k_bias):
dx = x - xu_i[k_bias, :]
return beta * (Ku / 2.0) * np.dot(dx, dx)
bias_potentials = [(lambda x, klocal=k: bias_potential(x, klocal)) for k in range(numbrellas)]
return u_kn, u_n, x_n, f_k_analytical, fes_const, bias_potentials
@pytest.fixture(scope="module")
def fes_1d():
gridscale = 0.2
nbinsperdim = 15
xrange = [[-3, 3]]
ndim = 1
nsamples = 1000
K0 = 20.0
Ku = 100
payload = {
"gridscale": gridscale,
"nbinsperdim": nbinsperdim,
"xrange": xrange,
"ndim": ndim,
"nsamples": nsamples,
"K0": K0,
"Ku": Ku,
}
u_kn, u_n, x_n, f_k_analytical, fes_const, bias_potentials = generate_fes_data(
K0=K0, Ku=Ku, ndim=ndim, nsamples=nsamples, gridscale=gridscale, xrange=xrange
)
numbrellas = (np.shape(u_kn))[0]
N_k = nsamples * np.ones([numbrellas], int)
# Histogram bins are indexed using the scheme:
xmin = gridscale * (np.min(xrange[0][0]) - 1 / 2.0)
xmax = gridscale * (np.max(xrange[0][1]) + 1 / 2.0)
dx = (xmax - xmin) / nbinsperdim
nbins = nbinsperdim**ndim
bin_edges = np.linspace(xmin, xmax, nbins + 1) # list of bin edges.
bin_centers = np.zeros([nbins, ndim])
ibin = 0
fes_analytical = np.zeros([nbins])
minmu2 = 1000000
zeroindex = 0
# construct the bins and the fes
for i in range(nbins):
xbin = xmin + dx * (i + 0.5)
bin_centers[ibin, 0] = xbin
mu2 = xbin * xbin
if mu2 < minmu2:
minmu2 = mu2
zeroindex = ibin
fes_analytical[ibin] = fes_const * mu2
ibin += 1
fzero = fes_analytical[zeroindex]
fes_analytical -= fzero
bin_n = -1 * np.ones([numbrellas * nsamples], int)
# Determine indices of those within bounds.
within_bounds = (x_n[:, 0] >= xmin) & (x_n[:, 0] < xmax)
# Determine states for these.
bin_n[within_bounds] = np.floor((x_n[within_bounds, 0] - xmin) / dx)
# Determine indices of bins that are not empty.
bin_counts = np.zeros([nbins], int)
for i in range(nbins):
bin_counts[i] = (bin_n == i).sum()
fes = FES(u_kn, N_k)
# Make a quick calculation to get reference uncertainties
fes.generate_fes(u_n, x_n, histogram_parameters={"bin_edges": bin_edges})
results = fes.get_fes(
bin_centers,
reference_point="from-specified",
fes_reference=0.0,
uncertainty_method="analytical",
)
payload["fes"] = fes
payload["u_kn"] = u_kn
payload["N_k"] = N_k
payload["u_n"] = u_n
payload["x_n"] = x_n
payload["dx"] = dx
payload["nbins"] = nbins
payload["bin_edges"] = bin_edges
payload["bin_centers"] = bin_centers
payload["fes_const"] = fes_const
payload["fes_analytical"] = fes_analytical
payload["f_k_analytical"] = f_k_analytical
payload["bias_potentials"] = bias_potentials
payload["reference_df_i"] = results["df_i"]
del results
return payload
@pytest.fixture(scope="module")
def fes_2d():
xrange = [[-3, 3], [-3, 3]]
ndim = 2
nsamples = 300
nbinsperdim = 10
gridscale = 0.2
K0 = 20.0
Ku = 100
delta = 0.0001 # to break ties in things being too close.
payload = {
"gridscale": gridscale,
"nbinsperdim": nbinsperdim,
"xrange": xrange,
"ndim": ndim,
"nsamples": nsamples,
"K0": K0,
"Ku": Ku,
}
u_kn, u_n, x_n, f_k_analytical, fes_const, bias_potentials = generate_fes_data(
K0=K0, Ku=Ku, ndim=ndim, nsamples=nsamples, gridscale=gridscale, xrange=xrange
)
numbrellas = (np.shape(u_kn))[0]
N_k = nsamples * np.ones([numbrellas], int)
# print("Solving for free energies of state ...")
# The dimensionless free energy is the integral of this, and can be computed as:
# f(beta,K) = - ln [ (2*np.pi/(Ko+Ku))^(d/2) exp[ -Ku*Ko mu' mu / 2(Ko +Ku)]
# f(beta,K) - fzero = -Ku*Ko / 2(Ko+Ku) = 1/(1/(Ku/2) + 1/(K0/2))
# for computing harmonic samples
# Can compare the free energies computed with MBAR if desired with f_k_analytical
xmin = gridscale * (np.min(xrange[0][0]) - 1 / 2.0)
xmax = gridscale * (np.max(xrange[0][1]) + 1 / 2.0)
ymin = gridscale * (np.min(xrange[1][0]) - 1 / 2.0)
ymax = gridscale * (np.max(xrange[1][1]) + 1 / 2.0)
dx = (xmax - xmin) / nbinsperdim
dy = (ymax - ymin) / nbinsperdim
nbins = nbinsperdim**ndim
bin_centers = np.zeros([nbins, ndim])
ibin = 0
fes_analytical = np.zeros([nbins])
minmu2 = 1000000
zeroindex = 0
# construct the bins and the fes
for i in range(nbinsperdim):
xbin = xmin + dx * (i + 0.5)
for j in range(nbinsperdim):
# Determine (x,y) of bin center.
ybin = ymin + dy * (j + 0.5)
bin_centers[ibin, 0] = xbin
bin_centers[ibin, 1] = ybin
mu2 = xbin * xbin + ybin * ybin
if mu2 < minmu2:
minmu2 = mu2
zeroindex = ibin
fes_analytical[ibin] = fes_const * mu2
ibin += 1
fzero = fes_analytical[zeroindex]
fes_analytical -= fzero
Ntot = int(np.sum(N_k))
bin_n = -1 * np.ones([Ntot, 2], int)
# Determine indices of those within bounds. Outside bounds stays as -1 in that direction.
within_boundsx = (x_n[:, 0] >= xmin) & (x_n[:, 0] < xmax)
within_boundsy = (x_n[:, 1] >= ymin) & (x_n[:, 1] < ymax)
# Determine states for these.
xgrid = (x_n[within_boundsx, 0] - xmin) / dx
ygrid = (x_n[within_boundsy, 1] - ymin) / dy
bin_n[within_boundsx, 0] = xgrid
bin_n[within_boundsy, 1] = ygrid
# Determine 2Dindices of bins that are not empty.
bin_counts = np.zeros(nbins, int)
for n in range(Ntot):
b = bin_n[n]
bin_label = b[0] + nbinsperdim * b[1]
bin_counts[bin_label] += 1
bin_edges = [
np.linspace(xmin, xmax, nbinsperdim + 1),
np.linspace(ymin, ymax, nbinsperdim + 1),
]
# initialize FES
fes = FES(u_kn, N_k)
# Make a quick calculation to get reference uncertainties
fes.generate_fes(u_n, x_n, histogram_parameters={"bin_edges": bin_edges})
results = fes.get_fes(
bin_centers + delta,
reference_point="from-specified",
fes_reference=[0, 0],
uncertainty_method="analytical",
)
payload["fes"] = fes
payload["u_kn"] = u_kn
payload["N_k"] = N_k
payload["u_n"] = u_n
payload["x_n"] = x_n
payload["dx"] = dx
payload["nbins"] = nbins
payload["bin_edges"] = bin_edges
payload["bin_centers"] = bin_centers
payload["delta"] = delta
payload["fes_const"] = fes_const
payload["fes_analytical"] = fes_analytical
payload["f_k_analytical"] = f_k_analytical
payload["bias_potentials"] = bias_potentials
payload["reference_df_i"] = results["df_i"]
del results
return payload
@pytest.mark.parametrize(
"reference_point",
[
"from-lowest",
"from-specified",
pytest.param("from-normalization", marks=pytest.mark.xfail(raises=ParameterError)),
pytest.param("all-differences", marks=pytest.mark.xfail(raises=ParameterError)),
],
)
def test_1d_fes_histogram(fes_1d, reference_point):
fes = fes_1d["fes"]
histogram_parameters = dict()
histogram_parameters["bin_edges"] = fes_1d["bin_edges"]
fes.generate_fes(fes_1d["u_n"], fes_1d["x_n"], histogram_parameters=histogram_parameters)
results = fes.get_fes(
fes_1d["bin_centers"],
reference_point=reference_point,
fes_reference=0.0,
uncertainty_method="analytical",
)
f_ih = results["f_i"]
df_ih = results["df_i"]
z = np.zeros(fes_1d["nbins"])
for i in range(0, fes_1d["nbins"]):
if df_ih[i] != 0:
z[i] = np.abs(fes_1d["fes_analytical"][i] - f_ih[i]) / df_ih[i]
else:
z[i] = 0
assert_almost_equal(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def base_1d_fes_kde(fes_1d, gen_kwargs, reference_point):
fes = fes_1d["fes"]
kde_parameters = dict()
kde_parameters["bandwidth"] = 0.5 * fes_1d["dx"]
# no analytical uncertainty for kde yet, have to use bootstraps
fes.generate_fes(
fes_1d["u_n"], fes_1d["x_n"], fes_type="kde", kde_parameters=kde_parameters, **gen_kwargs
)
results_kde = fes.get_fes(
fes_1d["bin_centers"],
reference_point=reference_point,
fes_reference=0.0,
uncertainty_method=None,
)
f_ik = results_kde["f_i"]
# df_ih = results_kde['df_i']
# Just use the reference for now
df_ih = fes_1d["reference_df_i"]
if df_ih is None:
df_ih = fes_1d["reference_df_i"]
z = np.zeros(fes_1d["nbins"])
for i in range(0, fes_1d["nbins"]):
if df_ih[i] != 0:
z[i] = np.abs(fes_1d["fes_analytical"][i] - f_ik[i]) / df_ih[i]
else:
z[i] = 0
assert_almost_equal(z / z_scale_factor, np.zeros(len(z)), decimal=0)
@pytest.mark.skipif(
not has_sklearn,
reason="Must have sklearn (package scikit-learn) installed to use KDE type FES",
)
@pytest.mark.parametrize("gen_kwargs", [{}, {"seed": 10}])
@pytest.mark.parametrize(
"reference_point",
[
"from-lowest",
"from-specified",
pytest.param("from-normalization", marks=pytest.mark.xfail(raises=ParameterError)),
pytest.param("all-differences", marks=pytest.mark.xfail(raises=ParameterError)),
],
)
def test_1d_fes_kde(fes_1d, gen_kwargs, reference_point):
base_1d_fes_kde(fes_1d, gen_kwargs, reference_point)
@pytest.mark.skipif(
not has_sklearn,
reason="Must have sklearn (package scikit-learn) installed to use KDE type FES",
)
def test_1d_fes_kde_bootstraped(fes_1d):
# Make tests faster overall by only testing bootstraps once.
# Once more paths are fixed, this can be folded into the gen_kwargs of the more general test
base_1d_fes_kde(fes_1d, {"n_bootstraps": 2}, "from-lowest")
def base_1d_fes_spline(fes_1d, gen_kwargs, reference_point):
fes = fes_1d["fes"]
bin_centers = fes_1d["bin_centers"]
fes_analytical = fes_1d["fes_analytical"]
# now spline
spline_parameters = dict()
spline_parameters["spline_weights"] = "unbiasedstate" # fastest spline method
spline_parameters["nspline"] = 4
spline_parameters["spline_initialize"] = "explicit"
spline_parameters["xinit"] = bin_centers[:, 0]
spline_parameters["yinit"] = fes_analytical # cheat by starting with "true" answer - for speed
spline_parameters["xrange"] = fes_1d["xrange"][0]
spline_parameters["fkbias"] = fes_1d["bias_potentials"]
spline_parameters["kdegree"] = 3
spline_parameters["optimization_algorithm"] = "Newton-CG"
spline_parameters["optimize_options"] = {"disp": True, "tol": 10 ** (-6)}
spline_parameters["objective"] = "ml"
spline_parameters["map_data"] = None
# no analytical uncertainty for kde yet, have to use bootstraps
fes.generate_fes(
fes_1d["u_n"],
fes_1d["x_n"],
fes_type="spline",
spline_parameters=spline_parameters,
**gen_kwargs
)
# Something wrong with unbiased state?
results_spline = fes.get_fes(
bin_centers, reference_point=reference_point, fes_reference=0.0, uncertainty_method=None
)
f_is = results_spline["f_i"]
# df_ih = results_spline['df_i']
# Just use the reference for now
df_ih = fes_1d["reference_df_i"]
if df_ih is None:
df_ih = fes_1d["reference_df_i"]
z = np.zeros(fes_1d["nbins"])
for i in range(0, fes_1d["nbins"]):
if df_ih[i] != 0:
z[i] = np.abs(fes_analytical[i] - f_is[i]) / df_ih[i]
else:
z[i] = 0
assert_almost_equal(z / z_scale_factor, np.zeros(len(z)), decimal=0)
@pytest.mark.parametrize("gen_kwargs", [{}, {"seed": 10}])
@pytest.mark.parametrize(
"reference_point",
[
"from-lowest",
# Lots of things are wrong with this, not going to debug it at this time.
# pytest.param('from-specified', marks=pytest.mark.xfail(reason="Not sure why this fails")),
# pytest.param('from-normalization', marks=pytest.mark.xfail),
# pytest.param('all-differences', marks=pytest.mark.xfail)
],
)
def test_1d_fes_spline(fes_1d, gen_kwargs, reference_point):
base_1d_fes_spline(fes_1d, gen_kwargs, reference_point)
def test_1d_fes_spline_bootstraped(fes_1d):
# Make tests faster overall by only testing bootstraps once.
# Once more paths are fixed, this can be folded into the gen_kwargs of the more general test
base_1d_fes_spline(fes_1d, {"n_bootstraps": 2}, "from-lowest")
@pytest.mark.parametrize(
"reference_point",
[
"from-lowest",
"from-specified",
pytest.param("from-normalization", marks=pytest.mark.xfail(raises=ParameterError)),
pytest.param("all-differences", marks=pytest.mark.xfail(raises=ParameterError)),
],
)
def test_2d_fes_histogram(fes_2d, reference_point):
"""testing fes_generate_fes and fes_get_fes in 2D"""
fes = fes_2d["fes"]
fes_analytical = fes_2d["fes_analytical"]
# set histogram parameters.
histogram_parameters = dict()
histogram_parameters["bin_edges"] = fes_2d["bin_edges"]
fes.generate_fes(
fes_2d["u_n"],
fes_2d["x_n"],
fes_type="histogram",
histogram_parameters=histogram_parameters,
)
results = fes.get_fes(
fes_2d["bin_centers"] + fes_2d["delta"],
reference_point=reference_point,
fes_reference=[0, 0],
)
f_ih = results["f_i"]
df_ih = fes_2d["reference_df_i"]
nbins = fes_2d["nbins"]
z = np.zeros(nbins)
for i in range(0, nbins):
if df_ih[i] != 0:
z[i] = np.abs(fes_analytical[i] - f_ih[i]) / df_ih[i]
else:
z[i] = 0
assert_almost_equal(z / z_scale_factor, np.zeros(len(z)), decimal=0)
@pytest.mark.skipif(
not has_sklearn,
reason="Must have sklearn (package scikit-learn) installed to use KDE type FES",
)
@pytest.mark.parametrize("gen_kwargs", [{}, {"seed": 10}])
@pytest.mark.parametrize(
"reference_point",
[
"from-lowest",
"from-specified",
pytest.param("from-normalization", marks=pytest.mark.xfail(raises=ParameterError)),
pytest.param("all-differences", marks=pytest.mark.xfail(raises=ParameterError)),
],
)
def test_2d_fes_kde(fes_2d, gen_kwargs, reference_point):
fes = fes_2d["fes"]
fes_analytical = fes_2d["fes_analytical"]
# set kde parameters
kde_parameters = dict()
kde_parameters["bandwidth"] = 0.5 * fes_2d["dx"]
fes.generate_fes(
fes_2d["u_n"], fes_2d["x_n"], fes_type="kde", kde_parameters=kde_parameters, **gen_kwargs
)
# I don't know if this needs the +delta
results_kde = fes.get_fes(
fes_2d["bin_centers"] + fes_2d["delta"],
reference_point=reference_point,
fes_reference=[0, 0],
)
f_ik = results_kde["f_i"]
df_ih = fes_2d["reference_df_i"]
nbins = fes_2d["nbins"]
z = np.zeros(nbins)
for i in range(0, nbins):
if df_ih[i] != 0:
z[i] = np.abs(fes_analytical[i] - f_ik[i]) / df_ih[i]
else:
z[i] = 0
assert_almost_equal(z / z_scale_factor, np.zeros(len(z)), decimal=0)
|