1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
import numpy as np
class HarmonicOscillatorsTestCase(object):
"""Test cases using harmonic oscillators.
Examples
--------
Generate energy samples with default parameters.
>>> testcase = HarmonicOscillatorsTestCase()
>>> x_kn, u_kln, N_k, s_n = testcase.sample()
Retrieve analytical properties.
>>> analytical_means = testcase.analytical_means()
>>> analytical_variances = testcase.analytical_variances()
>>> analytical_standard_deviations = testcase.analytical_standard_deviations()
>>> analytical_free_energies = testcase.analytical_free_energies()
>>> analytical_x_squared = testcase.analytical_observable('position^2')
Generate energy samples with default parameters in one line.
>>> x_kn, u_kln, N_k, s_n = HarmonicOscillatorsTestCase().sample()
Generate energy samples with specified parameters.
>>> testcase = HarmonicOscillatorsTestCase(O_k=[0, 1, 2, 3, 4], K_k=[1, 2, 4, 8, 16])
>>> x_kn, u_kln, N_k, s_n = testcase.sample(N_k=[10, 20, 30, 40, 50])
Test sampling in different output modes.
>>> x_kn, u_kln, N_k = testcase.sample(N_k=[10, 20, 30, 40, 50], mode='u_kln')
>>> x_n, u_kn, N_k, s_n = testcase.sample(N_k=[10, 20, 30, 40, 50], mode='u_kn')
>>> testcase = HarmonicOscillatorsTestCase(O_k=[0, 1], K_k=[1, 2])
>>> w_F, w_R, N_k = testcase.sample(N_k=[40, 50], mode='wFwR')
"""
def __init__(self, O_k=(0, 1, 2, 3, 4), K_k=(1, 2, 4, 8, 16), beta=1.0):
"""Generate test case with exponential distributions.
Parameters
----------
O_k : np.ndarray, float, shape=(n_states)
Offset parameters for each state.
K_k : np.ndarray, float, shape=(n_states)
Force constants for each state.
beta : float, optional, default=1.0
Inverse temperature.
Notes
-----
We assume potentials of the form U(x) = (k / 2) * (x - o)^2
Here, k and o are the corresponding entries of O_k and K_k.
The equilibrium distribution is given analytically by
p(x;beta,K) = sqrt[(beta K) / (2 pi)] exp[-beta K (x-x_0)**2 / 2]
The dimensionless free energy is therefore
f(beta,K) = - (1/2) * ln[ (2 pi) / (beta K) ]
"""
self.beta = beta
self.O_k = np.array(O_k, np.float64)
self.n_states = len(self.O_k)
self.K_k = np.array(K_k, np.float64)
if len(self.K_k) != self.n_states:
raise ValueError(
"Lengths of K_k={} and O_k={} should be equal".format(len(self.O_k), len(self.K_k))
)
def analytical_means(self):
return self.O_k
def analytical_variances(self):
return (self.beta * self.K_k) ** -1.0
def analytical_standard_deviations(self):
return (self.beta * self.K_k) ** -0.5
def analytical_observable(self, observable="position"):
if observable == "position":
return self.analytical_means()
if observable == "potential energy":
return (0.5 / self.beta) * np.ones(self.n_states)
if observable == "position^2":
return 1.0 / (self.beta * self.K_k) + np.square(self.O_k)
if observable == "RMS displacement":
return self.analytical_standard_deviations()
def analytical_free_energies(self, subtract_component=0):
fe = -0.5 * np.log(2 * np.pi / (self.beta * self.K_k))
if subtract_component is not None:
fe -= fe[subtract_component]
return fe
def analytical_entropies(self, subtract_component=0):
return self.analytical_observable(
observable="potential energy"
) - self.analytical_free_energies(subtract_component)
def sample(self, N_k=(10, 20, 30, 40, 50), mode="u_kn", seed=None):
"""Draw samples from the distribution.
Parameters
----------
N_k : np.ndarray, int
number of samples per state
mode : str, optional, default='u_kn'
If 'u_kln', return K x K x N_max matrix where u_kln[k,l,n] is reduced
potential of sample n from state k evaluated at state l.
If 'u_kn', return K x N_tot matrix where u_kn[k,n] is reduced potential
of sample n (in concatenated indexing) evaluated at state k.
If 'wFwR', check that len(N_k) involves only two states, and calculate
the forward and reverse work distributions.
seed: int, optional, default=None. Provides control over the random seed for replicability.
Returns
-------
if mode == 'u_kn':
x_n : np.ndarray, shape=(n_states*n_samples), dtype=float
x_n[n] is sample n (in concatenated indexing)
u_kn : np.ndarray, shape=(n_states, n_states*n_samples), dtype=float
u_kn[k,n] is reduced potential of sample n (in concatenated indexing) evaluated at state k.
N_k : np.ndarray, shape=(n_states), dtype=float
N_k[k] is the number of samples generated from state k
s_n : np.ndarray, shape=(n_samples), dtype='int'
s_n is the state of origin of x_n
x_kn : np.ndarray, shape=(n_states, n_samples), dtype=float
1D harmonic oscillator positions
u_kln : np.ndarray, shape=(n_states, n_states, n_samples), dytpe=float, only if mode='u_kln'
u_kln[k,l,n] is reduced potential of sample n from state k evaluated at state l.
N_k : np.ndarray, shape=(n_states), dtype=int32
N_k[k] is the number of samples generated from state k
if mode == 'wFwR':
w_F : np.ndarray, shape=(N_k[0]), dtype=float
Work generated switching from state 0 to 1
w_R : np.ndaarry, shape=(N_k[1]), dtype=float
Work generated switching from state 1 to 0
N_k : np.ndarray, shape=(2), dtype=float
N_k[k] is the number of samples generated from state k
"""
np.random.seed(seed)
N_k = np.array(N_k, int)
if len(N_k) != self.n_states:
raise Exception(
"N_k has {:d} states while self.n_states has {:d} states.".format(
len(N_k), self.n_states
)
)
if mode == "wFwR":
if len(N_k) != 2:
raise Exception(
"N_k has {:d} states instead of 2, we cannot generate forward and reverse work distributions".format(
len(N_k)
)
)
N_max = N_k.max() # maximum number of samples per state
N_tot = N_k.sum() # total number of samples
x_kn = np.zeros([self.n_states, N_max], np.float64)
u_kln = np.zeros([self.n_states, self.n_states, N_max], np.float64)
x_n = np.zeros([N_tot], np.float64)
s_n = np.zeros([N_tot], int)
u_kn = np.zeros([self.n_states, N_tot], np.float64)
index = 0
for k, N in enumerate(N_k):
x0 = self.O_k[k]
sigma = (self.beta * self.K_k[k]) ** -0.5
x = np.random.normal(loc=x0, scale=sigma, size=N)
x_kn[k, 0:N] = x
x_n[index : (index + N)] = x
s_n[index : (index + N)] = k
for l in range(self.n_states):
u = self.beta * 0.5 * self.K_k[l] * (x - self.O_k[l]) ** 2.0
u_kln[k, l, 0:N] = u
u_kn[l, index : (index + N)] = u
index += N
if mode == "u_kn":
return x_n, u_kn, N_k, s_n
elif mode == "u_kln":
return x_kn, u_kln, N_k
elif mode == "wFwR":
return (
u_kln[0, 1, : N_k[0]] - u_kln[0, 0, : N_k[0]],
u_kln[1, 0, : N_k[1]] - u_kln[1, 1, : N_k[1]],
N_k,
)
else:
raise Exception("Unknown mode '{}'".format(mode))
return
@classmethod
def evenly_spaced_oscillators(
cls,
n_states,
n_samples_per_state,
lower_O_k=1.0,
upper_O_k=5.0,
lower_k_k=1.0,
upper_k_k=3.0,
):
"""Generate samples from evenly spaced harmonic oscillators.
Parameters
----------
n_states : np.ndarray, int
number of states
n_samples_per_state : np.ndarray, int
number of samples per state. The total number of samples
n_samples will be equal to n_states * n_samples_per_state
lower_O_k : float, optional, default=1.0
Lower bound of O_k values
upper_O_k : float, optional, default=5.0
Upper bound of O_k values
lower_k_k : float, optional, default=1.0
Lower bound of O_k values
upper_k_k : float, optional, default=3.0
Upper bound of k_k values
Returns
-------
name: str
Name of testsystem
testsystem : TestSystem
The testsystem object
x_n : np.ndarray, shape=(n_samples)
Coordinates of the samples
u_kn : np.ndarray, shape=(n_states, n_samples)
Reduced potential energies
N_k : np.ndarray, shape=(n_states)
Number of samples drawn from each state
s_n : np.ndarray, shape=(n_samples)
State of origin of each sample
"""
name = "{:d}x{:d} oscillators", format(n_states, n_samples_per_state)
O_k = np.linspace(lower_O_k, upper_O_k, n_states)
k_k = np.linspace(lower_k_k, upper_k_k, n_states)
N_k = (np.ones(n_states) * n_samples_per_state).astype("int")
testsystem = cls(O_k, k_k)
x_n, u_kn, N_k_output, s_n = testsystem.sample(N_k, mode="u_kn", seed=seed)
return name, testsystem, x_n, u_kn, N_k_output, s_n
|