1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
|
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
import logging
from enum import IntEnum, IntFlag
from pymeasure.instruments import Instrument, Channel, SCPIUnknownMixin
from pymeasure.instruments.validators import truncated_range, strict_discrete_set, \
strict_range
# Setup logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
class SampleHold(IntEnum):
MODE_0 = 0
MODE_100uS = 6
MODE_200uS = 7
MODE_500uS = 8
MODE_1mS = 9
MODE_2mS = 10
MODE_5mS = 11
MODE_10mS = 12
MODE_1PLC = 13 # Number of power line cycles
MODE_2PLC = 14
MODE_5PLC = 15
MODE_10PLC = 16
MODE_20PLC = 17
class SampleMode(IntEnum):
ASYNC = 1 # Asynchronous operation
PULSED_SYNC = 2 # Synchronous operation of DC measurement and pulse measurement
PULSED_POSITIVE = 3 # Positive tracking operation for DC measurement and pulse measurement
PULSED_REVERSE = 4 # DC measurement, pulse measurement reverse polarity tracking operation
SWEEP_SYNC = 5 # Synchronous operation of sweep measurement
SWEEP_DELAYED = 6 # Delayed sweep operation
SWEEP_DOUBLE = 7 # Double synchronous sweep operation
BINARY_SEARCH = 8 # Binary search
LINEAR_SEARCH = 9 # Linear search
class VoltageRange(IntEnum):
# When the integration time is sample hold mode (SH) and between 100 μs to 500 μs, the
# resolution is as follows.
#
# Integration time Decomposition energy (digit)
# SH, 100μs 10 digits
# 200μs 5 digits
# 500μs 2 digits
# The range that maximizes the number of digits in the measurement data is automatically
# selected.
# It cannot be specified for pulse measurement and pulse sweep.
AUTO = 0 # ±1μV resolution
# Limited auto range
# It operates in the same way as the auto range except that the specified range is minimized.
# It cannot be specified for pulse measurement and pulse sweep.
AUTO_600mV = 23 # ±1μV resolution
AUTO_6V = 24 # ±10μV resolution
AUTO_60V = 25 # ±100μV resolution
AUTO_200V = 26 # ±1mV resolution
# Best fixed range
# - Voltage generation When measuring voltage (VSVM), the range is the same as the generation
# range.
# - In the case of current generation voltage measurement (ISVM), it is in the same range as the
# compliance range.
FIXED_BEST = 20 # ±1μV - 1mV resolution
# Measure in the specified range.
FIXED_600mV = 3 # ±1μV resolution
FIXED_6V = 4 # ±10μV resolution
FIXED_60V = 5 # ±100μV resolution
FIXED_200V = 6 # ±1mV resolution
class CurrentRange(IntEnum):
# When the integration time is sample hold mode (SH) and between 100 μs to 500 μs, the
# resolution is as follows.
#
# Integration time Decomposition energy (digit)
# SH, 100μs 10 digits
# 200μs 5 digits
# 500μs 2 digits
# The range that maximizes the number of digits in the measurement data is automatically
# selected.
# It cannot be specified for pulse measurement and pulse sweep.
AUTO = 0 # ±10fA resolution
# It operates in the same way as the auto range, except that the specified range is the minimum
# range. It cannot be specified for pulse measurement and pulse sweep.
AUTO_6nA = 23 # ±10fA resolution
AUTO_60nA = 24 # ±100fA resolution
AUTO_600nA = 25 # ±1pA resolution
AUTO_6μA = 26 # ±10pA resolution
AUTO_60μA = 27 # ±100pA resolution
AUTO_600μA = 28 # ±1nA resolution
AUTO_6mA = 29 # ±10nA resolution
AUTO_60mA = 30 # ±100nA resolution
AUTO_600mA = 31 # ±1μA resolution
AUTO_2A_6A = 32 # ±10μA resolution
AUTO_20A = 33 # ±100μA resolution
# Current generation when measuring current (ISIM), the range is the same as the generation
# range. When measuring voltage generation current (VSIM), it is in the same
# range as the compliance range.
FIXED_BEST = 20 # ±10fA - ±100μA resolution
# A fixed range cannot be specified for internal measurements.
# It can be specified only for external measurement. MEASURE INPUT-ANALOG COMMON
# Also measures the voltage between the terminals as the specified current range data.
FIXED_6nA = 3 # ±10fA resolution
FIXED_60nA = 4 # ±100fA resolution
FIXED_600nA = 5 # ±1pA resolution
FIXED_6μA = 6 # ±10pA resolution
FIXED_60μA = 7 # ±100pA resolution
FIXED_600μA = 8 # ±1nA resolution
FIXED_6mA = 9 # ±10nA resolution
FIXED_60mA = 10 # ±100nA resolution
FIXED_600mA = 11 # ±1μA resolution
FIXED_2A_6A = 12 # ±10μA resolution
FIXED_20A = 13 # ±100μA resolution
class SweepMode(IntEnum):
LINEAR_ONE_WAY_SWEEP = 1
LOG_ONE_WAY_SWEEP = 2
LINEAR_ROUND_TRIP_SWEEP = 3
LOG_ROUND_TRIP_SWEEP = 4
class OutputType(IntEnum):
REAL_TIME_OUTPUT = 1 # there is output every time it is measured
BUFFERING_OUTPUT_ALL = 2 # output all at once after sweeping
BUFFERING_OUTPUT_SPECIFIED = 3 # After sweeping, only output the specified data
class TriggerInputType(IntEnum):
ALL = 1
SOFTWARE_ONLY = 2
CHANNELS_ONLY = 3
class MeasurementType(IntEnum):
MEASURE_DATA = 1
MEASURE_DATA_AND_OCCURENCE = 2
class SequenceInterruptionType(IntEnum):
""" 1. Release pause state is a valid command only in the
sequence program pause state. otherwise it is ignored.
2. Pause state enters the pause state when the currently
executing program ends.
3. Abort sequence program stops the sequence program when
the currently executing program ends. If the currently running program
is a sweep operation, interrupt the sweep operation and stop the sequence
program. The output value will be the bias value.
"""
RELEASE_PAUSE = 1
PAUSE = 2
INTERRUPT_SEQUENCE = 3
class DOR(IntFlag):
""" bit assigment for the Device Operation Register (DOR):
========= ==========================
Bit (dec) Description
========= ==========================
13 Indicates that the fast tokens program is running.
12 Error in search measurement
11 End of sequence program/high-speed sequence program execution
10 Sequence program Pause state
9 Fan stop detection
8 Self-test error occurred (logic part)
7 Trigger wait state in trigger link master operation
6 Calibration mode status
5 Trigger link ON state
4 Trigger link bus error
3 Sequence program/high-speed sequence 1 program/add/de) waiting
2 Wait for sequence program wait time
1 Sequence program running
0 Synchronous operation state
========= ==========================
"""
FAST_TOKENS_PROGRAM_IS_RUNNING = 1 << 13
ERROR_IN_SEARCH_MEASUREMENT = 1 << 12
END_OF_SEQUENCE_PROGRAM = 1 << 11
SEQUENCE_PROGRAM_PAUSE_STATE = 1 << 10
FAN_STOP_DETECTION = 1 << 9
SELF_TEST_ERROR_LOGIC = 1 << 8
TRIGGER_WAIT_STATE = 1 << 7
CALIBRATION_MODE_STATUS = 1 << 6
TRIGGER_LINK_ON_STATE = 1 << 5
TRIGGER_LINK_BUS_ERROR = 1 << 4
SEQUENCE_PROGRAM_WAITING = 1 << 3
WAIT_FOR_SEQUENCE_PROGRAM_WAIT_TIME = 1 << 2
SEQUENCE_PROGRAM_RUNNING = 1 << 1
SYNCHRONOUS_OPERATION_STATE = 1 << 0
class COR(IntFlag):
""" bit assigment for the Channel Operations Register (COR):
========= =============================================
Bit (dec) Description
========= =============================================
14 The result of the comparison operation is HI
13 The result of the comparison operation is GO
12 The result of the comparison operation is LO
11 Overheat detection
10 Overload detection
9 Oscillation detection
8 Compliance detection
7 Synchronous operation master channel
6 Measurement data output specification
5 There is measurement data
4 Self-test error occurrence (analog part)
3 Measurement data buffer full
2 Waiting for trigger
1 End of sweep
0 Operated state
========= =============================================
"""
COMPARISON_RESULT_HI = 1 << 14
COMPARISON_RESULT_GO = 1 << 13
COMPARISON_RESULT_LO = 1 << 12
OVERHEAT_DETECTION = 1 << 11
OVERLOAD_DETECTION = 1 << 10
OSCILLATION_DETECTION = 1 << 9
COMPLIANCE_DETECTION = 1 << 8
SYNCHRONOUS_OPERATION_MASTER_CHANNEL = 1 << 7
MEASUREMENT_DATA_OUTPUT_SPECIFICATION = 1 << 6
HAS_MEASUREMENT_DATA = 1 << 5
SELF_TEST_ERROR_ANALOG_SECTION = 1 << 4
MEASUREMENT_DATA_BUFFER_FULL = 1 << 3
WAITING_FOR_TRIGGER = 1 << 2
END_OF_SWEEP = 1 << 1
OPERATED_STATE = 1 << 0
class SRER(IntFlag):
""" bit assigment for the Service Request Enable Register (SRER):
========= ===========================================================
Bit (dec) Description
========= ===========================================================
0 none
1 ERR Set when any of QYE, DDE, EXE, or CME in
the Standard Event Status Register (SESR) is set.
2 DOP Set when a bit in the device operation register
for which the enable register is set to enabled is set.
Cleared by reading the device operation register.
3 none
4 MAV Set when output data is set in the output queue.
Cleared when output data is read.
5 ESB Set when a bit in the Standard Event Status Register
(SESR) is set and the enable register is set to Enabled.
Cleared by reading SESR.
6 RQS (MSS) Set when bit O to bit 5 and bit 7 of the
Status Byte register are set. (this bit is read-only)
7 COP Set when a bit in the Channel Operations Register
is set with the Enable Register set to Enable.
Cleared by reading the Channel Operations Register.
========= ===========================================================
"""
ERR = 1 << 1
DOP = 1 << 2
MAV = 1 << 4
ESB = 1 << 5
RQS = 1 << 6
COP = 1 << 7
class SESR(IntFlag):
""" bit assigment for the Standard Event Status Register (SESR):
========= ==========================
Bit (dec) Description
========= ==========================
0 OPC (Operation Complete) not used
1 RQC unused
2 QYE (Query Error) Set when the output queue
overflows when reading without output data.
3 DDE (Device Dependent Error) Set when an
error occurs in the self-test.
4 EXE (Execution Error) Set when the input
data is outside the range set internally,
or when the command cannot be executed.
5 CME (Command Error) Set when an undefined header
or data format is wrong, or when there is a
syntax error in the command.
6 URQ unused
7 PON Set when power is switched from OFF to ON.
========= ==========================
"""
OPC = 1 << 0
RQC = 1 << 1
QYE = 1 << 2
DDE = 1 << 3
EXE = 1 << 4
CME = 1 << 5
URQ = 1 << 6
PON = 1 << 7
class TriggerOutputSignalTiming(IntFlag):
""" bit assigment for the timing of the trigger output signal
output from TRIGGER OUT on the rear panel:
========= =============================
Bit (dec) Description
========= =============================
5 At the end of the sweep
4 At the end of the pulse width
3 At the end of the pulse cycle
2 At the end of measurement
1 At the start of measurement
0 At the start of occurrence
========= =============================
"""
END_OF_SWEEP = 1 << 5
END_OF_THE_PULSE_WIDTH = 1 << 4
END_OF_THE_PULSE_CYCLE = 1 << 3
END_OF_MEASUREMENT = 1 << 2
START_OF_MEASUREMENT = 1 << 1
START_OF_OCCURRENCE = 1 << 0
"""
TODO, implement the following commands:
(54) LDS? This is a query command for reading the currently set parameters via GPIB.
(93) MAR ~; NENT The MAR ~; NENT command sets the search measurement sense channel source, target
measurement,
and compliance values, and the search channel start/stop and compliance values.
It also sets the output state after stopping for both the sense channel and search channel.
(94) MAR~;CMD~;NEN During search measurement, you can set ON/OFF of the measurement data comparison
calculation and the upper and lower limit data to be compared.
Syntax:
MAR 0, search mode, generated value after stop; command; NEN
1 Binary search measurement: sense channel
2 Binary search measurement: search channel (negative feedback search)
3 Binary search measurement: search channel (positive feedback search)
4 Linear search measurement: sense channel
5 Linear search measurement: search channel
Occurrence value after stopping
1 Generates a bias value.
2 Leave the finished generation value as is.
3 Generate stop values.
- The commands that can be used for search measurement are shown below.
Binary search Linear search
sense channel: FXI, FXV, PXI, PXV, CMD FXI, FXV, PXI, PXV, CMD
search channel: WI, WV WI, WV, PWI, PWV, CMD
- If you set a command other than the above with the MAR ~; NENT command, an error will occur.
- The linear search CMD (comparison operation) command is set to either the sense channel or the
search channel.
Therefore, if the CMD command is set for both channels, the comparison operation is performed with
the one that was set later.
Number of steps: 2. When the source range is 600mV, search is performed in steps of 20µV.
MAR 0, 1, 2;FXV 1, 20, 6, 17, 2, 0;NENT
MAR 0, 2, 2;WV 2, 1, 1, 20, -3, 0, 17, 6.2E-2, -3; NENT
(95) PGST~;END # Program number that specifies the command to be executed by the high-speed sequence
program. This command stores in memory.
Commands that can be used unconditionally
DV, DI, PV, PI
WT, MST, RV, RI
CMD, CN, CL, OPM, FL
LTL, DIOS, DIOE, EXT
PCEL, MAR ~ NENT
Commands that can be used with MAR ~ ; NEN commands
FXV, FXI. PXV, PXI, WV, WI, PWV, PWI
(96) EXT # This command is used to set a conditional jump in the program of a high-speed sequence
program.
(97) PGON To execute a high-speed sequence program, store the program in program numbers 1 to 20
with the PGST ; END command in advance.
Note that program numbers that do not store programs are skipped without being executed.
(98) PGOF This command cancels the start/enable state of the high-speed sequence program set by the
PGON command.
(99) PCEL This command clears the program stored in memory by the PGST command.
"""
def map_values(value, values):
return values[strict_discrete_set(value, values)]
class AdvantestR624X(SCPIUnknownMixin, Instrument):
""" Represents the Advantest R624X series (channel A and B) SourceMeter and provides a
high-level interface for interacting with the instrument.
This is the base class for both AdvantestR6245 and AdvantestR6246 devices. It's not
necessary to instantiate this class directly instead create an instance of the
AdvantestR6245 or AdvantestR6246 class as shown in the following example:
.. code-block:: python
smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.current_source(source_range = CurrentRange.FIXED_60mA,
source_value = 0, # Source current at 0 A
voltage_compliance = 10) # Voltage compliance at 10 V
smu.ch_A.enable_source() # Enables the source output
smu.ch_A.measure_voltage()
smu.ch_A.current_change_source = 5e-3 # Change to 5mA
print(smu.read_measurement()) # Read and print the voltage
smu.ch_A.standby() # Put channel A in standby
"""
def __init__(self, adapter, name="R624X Source meter Base Class", **kwargs):
super().__init__(adapter, name, **kwargs)
self.sequence = []
self.store_to_sequence = False
self.sequence_line_count = 0
def write(self, command, **kwargs):
if self.store_to_sequence:
self.append_sequence_command(command)
else:
super().write(command, **kwargs)
def check_errors(self):
errors = {
100: "A fan stop was detected.",
101: "Since the overload detection of the {0} channel was activated, it was set to"
"standby.",
102: "Since the overheat detection of the {0} channel worked, I made it a standby.",
200: "Received an undefined command.",
201: "There is an error in the data format.",
210: "Received data outside the set range.",
211: "A command was received that cannot be executed in the current settings.",
221: "Data output buffer overflowed.",
}
error = self.ask('err?')
unit = int(error[0:2])
err = int(error[2:5])
channel = f'{"B" if unit > 1 else "A"}'
if err in errors:
message = errors[err].format(channel)
elif err > 0 and err < 100:
if unit == 0:
message = "As a result of the self-test, an abnormality was found in the logic" \
"part."
else:
message = f"Result of self-test {channel}-channel was found to be abnormal."
elif err > 99 and err < 200:
message = "Internal error, calibration error"
else:
message = "Setting error"
if err == 0:
return
else:
raise OSError(
f"{self.name} Error {error[0:5]}: {message}")
def enable_source(self):
""" Put channel A & B into the operating state (``CN``).
.. note::
When the 'interlock control' of the 'SCT' command is '2' and the
clock signal is 'HI', it will not enter the operating state.
"""
self.write('cn 0')
def standby(self):
""" Put channel A & B in standby mode (``CL``).
"""
self.write('cl 0')
def clear_status_register(self):
""" Clears the Standard Event Status Register (SESR) and
related queues (excluding output queues) (``*CLS``).
"""
self.write('*cls')
srq_enabled = Instrument.setting(
"s%d",
""" Set a boolean that controls whether the GPIB SRQ feature is
enabled, takes values of True or False (``S0/S1``).
:type: bool
The SRQ feature of the GPIB bus provides hardware handshaking between
the GPIB controller card in the PC and the instrument. This allows
synchronization between moving data to the PC with the state of the
instrument without the need to use time delay functions.
""",
validator=strict_discrete_set,
values={False: 1, True: 0},
map_values=True
)
def trigger(self):
""" Outputs the trigger signal or the start of sweep and
search measurement to both A and B channels and the trigger link (``XE``).
.. note::
* When both A channel and B channel are waiting for a trigger,
both channels are triggered.
* When either channel A or B is waiting for a trigger,
only the channel that is waiting for a trigger is triggered.
* When both A channel and B channel are waiting for sweep start,
this will apply sweep start to both channels.
* When either channel A or B is in the sweep start waiting state,
only the channel in the sweep start waiting state is started.
* When either channel A or B is waiting for a trigger and the
other is waiting for a sweep start, trigger and sweep start
are applied, respectively.
* When the trigger link is ON and this is the master unit,
set the \\*TRG signal on the trigger link bus to TRUE.
* When the trigger link is ON and the master unit,
the trigger link is activated.
"""
self.write('xe 0')
def stop(self):
""" Stops the sweep when the sweep is started by
the XE command or the trigger input signal (``SP``). """
self.write('sp 0')
def set_digital_output(self, values):
""" Outputs a 16-bit signal from the DIGITAL OUT output terminal
on the rear panel. You can set up to 9 output data (``DIOS``).
If there are multiple values specified, the data is output at
intervals of about 2ms and fixed as the final data.
:param values: Digital out bit values
:type values: int or list
.. note::
The output of digital data to the DIGITAL OUT pin is only the bits
specified by the DIOE command. Bits that are not specified will
result in alarm output or unused, and no digital data will be output.
"""
if isinstance(values, list):
values = [str(i) for i in values]
values = ",".join(values)
self.write(f'dios 0,{values}')
sweep_delay_time = Instrument.setting(
"gdly 0,%.4e",
""" Set the sweep delay time (Ta) or generation / delay time (Ta)
of the master channel and slave channel during delayed sweep operation
or synchronous operation between pulse measurements (``GDLY``).
:type: float
.. note::
If the sweep delay time does not meet (Ta<Tw and Ta<Td+Tit),
an execution error will occur and it will not be set:
Tw: Pulse width
Td: Major delay time
Tit: Integration time
""",
)
def append_sequence_command(self, command):
valid_commands = [
'jm', 'gdly', 'fl', 'dv', 'di', 'fxv', 'fxi', 'wv', 'wi', 'mdwv', 'mdwi', 'pv', 'pi',
'pxv', 'pxi', 'pwv', 'pwi', 'mpwv', 'mpwi', 'rv', 'ri', 'mst', 'wt', 'cm', 'cmd', 'nug',
'ofm', 'fmt', 'mbc', 'fmt', 'wm', 'cn', 'cl', 'opm', 'osl', 'ltl', 'tjm', 'xe', '*trg',
'tot', 'sct', 'osig', 'dios', 'dioe', 'ian', 'tlnk', 'wait', 'sav', 'rcl', '*sre',
'*ese', '*cls', 'coe', 'doe']
if not self.store_to_sequence:
raise ValueError("init_sequence() should be called first")
for s in valid_commands:
if s == command.lower()[:len(s)]:
self.sequence.append(command)
def init_sequence(self):
""" This function starts the redirection of :meth:`~.write`
to :meth:`~.store_sequence_command` to automatically create a sequence program.
"""
self.sequence = []
self.store_to_sequence = True
self.sequence_line_count = 0
def start_sequence(self, repeat=1):
""" This function starts the sequence program which is
initiated by :meth:`~.init_sequence` and ended by :meth:`~.end_sequence`.
"""
self.start_sequence_program(1, self.sequence_line_count, repeat)
def end_sequence(self):
""" This function ends the sequence program which is
initiated by :meth:`~.init_sequence`.
"""
command = ''
self.store_to_sequence = False
for s in self.sequence:
# Sequence memory has a maximum of 128x100 characters
if len(command) + len(s) + 1 < 128:
command += s + ';'
else:
self.sequence_line_count += 1
if self.sequence_line_count > 100:
raise OSError(
f"{self.name} Error out of sequence memory")
self.store_sequence_command(self.sequence_line_count, command)
command = s + ';'
self.sequence_line_count += 1
self.store_sequence_command(self.sequence_line_count, command)
self.sequence = []
def sequence_wait(self, wait_mode, wait_value):
""" Waits for program execution and is used only for sequence programs (``WAIT``).
:param int wait_mode: Whether wait time (1) or trigger input count (2) is specified
:param float wait_value: Wait time or trigger input count as specified by wait_mode
This command has the following functions:
* Make the execution of the next program wait for the specified time.
* Makes the next program execution wait until the specified number of triggers is input.
Regardless of the wait mode, if the wait data is 0, the wait operation is not performed.
When the wait mode is "2", the following commands and signals can be used as trigger inputs:
* XE (XE 0, XE 1, XE 2)
* \\*TRG
* GET command (group execute trigger)
* Trigger input signal on rear panel
"""
wait_mode = strict_discrete_set(wait_mode, [1, 2])
self.write(f'wait {wait_mode},{wait_value}')
def start_sequence_program(self, start, stop, repeat):
""" Starts from the program number until the stop of the sequence program (``RU``).
Executes sequentially up to the program number, and repeats for the number of times of
specified.
:param int start: Number of the program to start from ranging 1 to 100
:param int stop: Number of the program to stop at ranging from 1 to 100
:param int repeat: Number of times repeated from 1 to 100
"""
start = truncated_range(start, [1, 100])
stop = truncated_range(stop, [1, 100])
repeat = truncated_range(repeat, [1, 100])
self.write(f'ru 0,{start},{stop},{repeat}')
def store_sequence_command(self, line, command):
""" Stores the program to be executed in the sequence program (``ST``).
If the program already exists, it is replaced with the new sequence.
:param int line: Line number specified of memory location
:param str command: Command(s) specified to be stored delimited by a semicolon (;)
"""
line = truncated_range(line, [1, 100])
if command[-1:] != ';':
command += ';'
self.write(f'st {line};{command}end')
def interrupt_sequence_command(self, action):
""" Interrupts the sequence program executed
by the :py:meth:`~start_sequence_program` command (``SQSP``).
:param action: Specifies sequence interruption setup
:type action: :class:`SequenceInterruptionType`
"""
action = strict_discrete_set(action, [1, 2, 3])
self.write(f'sqsp {action}')
sequence_program_number = Instrument.measurement(
"lnub?",
""" Measure the amount of program sequences stored in the sequence memory (``LNUB?``).
""",
cast=int,
)
def sequence_program_listing(self, line):
""" This is a query command to know the command list stored in the
program number of the sequence program memory (``LST?``).
:param int action: Specifying the memory location for reading the commands
:return: Commands stored in sequence memory
:rtype: str
"""
line = truncated_range(line, [1, 100])
return self.ask('lst? {line}')
def trigger_output_signal(self, trigger_output, alarm_output, scanner_output):
""" Directly output the trigger output signal, alarm output signal,
scanner (start/stop) output signal from GPIB (``OSIG``).
:param int trigger_output: Number specifying type of trigger output
:param int alarm_output: Number specifying type of alaram output
:param int scanner_output: Number specifying the type of scanner output
Trigger output:
1. Do not output to trigger output.
2. Output a negative pulse to the trigger output.
Alarm output:
1. Finish output GO, LO.HI both set to HI level. (reset)
2. Finish output Set GO to LO level.
3. Set home output LO to LO level.
4. Terminate output HI to LO level.
Scanner - (start/stop) output:
1. Set the scanner scoot output to HI level. Output a negative pulse to the stop output.
2. Make the scanner start output low.
3. Output a HI level for the scanner start output and a negative pulse for the stop output.
"""
trigger_output = strict_discrete_set(trigger_output, [1, 2])
alarm_output = strict_discrete_set(alarm_output, [1, 2, 3, 4])
scanner_output = strict_discrete_set(scanner_output, [1, 2, 3])
self.write(f'osig 0,{trigger_output},{alarm_output},{scanner_output}')
def set_output_format(self, delimiter_format, block_delimiter, terminator):
""" Sets the format and terminator of the output data output by GPIB (``FMT``).
:param int delimiter_format: Type of delimiter format
:param int block_delimiter: Type of block delimiter
:param int terminator: Type of termination character
The output of <EOI> (End or Identify) is output at the following timing:
1,2: Simultaneously with LF
4: Simultaneously with the last output data
If the output data format is specified as binary format,
the terminator is fixed to <EOI> only and the terminator selection is ignored.
delimiter_format:
1. ASCII format with header
2. No header, ASCII format
3. Binary format
block_delimiter:
1. Make it the same as the terminator.
2. Use semicolon ;
3. Use comma ,
terminator:
1. CR, LF<EOI>
2. LF<EOI>
3. LF
4. <EOI>
=== =================================================================================
1st character header:
-------------------------------------------------------------------------------------
A) Normal measurement data
B) Measurement data during overrange
C) Compliance (limiter) is working.
D) Oscillation detection is working.
E) [Indicates the generated data]
F) Measurement data when an error occurs in the search measurement
Z) Measurement data is not stored in the buffer memory.
=== =================================================================================
=== =================================================================================
2nd character header:
-------------------------------------------------------------------------------------
A) A-channel data during asynchronous operation (A-channel generation data)
B) B-channel data during asynchronous operation (B channel generation data)
I) A-channel data for synchronous, sweeping, delayed sweep, and double synchronous
sweep operations.
J) B-channel data for synchronous, sweeping, delayed sweep, and double synchronous
sweep operations.
=== =================================================================================
=== =================================================================================
3rd character header:
-------------------------------------------------------------------------------------
A) Current generation, voltage measurement (ISVM) [Current generation]
B) Voltage generation, current measurement (VSIM) [Voltage generation]
C) Current generation, current measurement (ISIM)
D) Voltage generation, voltage measurement (VSVM)
E) Current generation, external voltage measurement (IS, EXT, VM)
F) Voltage generation, external current measurement (VS, EXT, IM)
G) Current generation, external current measurement (IS, EXT. IM)
H) Voltage generation, external voltage measurement (VS, EXT, VM)
Z) The measurement data is not stored in the buffer memory.
=== =================================================================================
=== =================================================================================
4th character header:
-------------------------------------------------------------------------------------
A) No operation (fixed to A)
B) Null operation result
C) The result of the comparison operation is GO.
D) The result of the comparison operation is LO.
E) The result of the comparison operation is HI.
F) The result of null operation + comparison operation is GO.
G) The result of null operation + comparison operation is LO.
H) The result of null operation + comparison operation is HI.
Z) Measurement data is not stored in the buffer memory.
=== =================================================================================
"""
delimiter_format = strict_discrete_set(delimiter_format, [1, 2, 3])
block_delimiter = strict_discrete_set(block_delimiter, [1, 2, 3])
terminator = strict_discrete_set(terminator, [1, 2, 3, 4])
self.write(f'fmt 0,{delimiter_format},{block_delimiter},{terminator}')
service_request_enable_register = Instrument.control(
'*sre?', '*sre %i',
""" Control the contents of the service request enable register (SRER)
in the form of a :class:`SRER` ``IntFlag`` (``*SRE``).
.. note::
Bits other than the RQS bit are not cleared by serial polling.
When :meth:`~.power_on_clear` is set, status byte enable register,
SESER, device operation enable register, channel operation,
the enable register is cleared and no SRQ is issued.
""",
validator=truncated_range,
values=[0, 255],
get_process=lambda v: SRER(int(v)),
)
event_status_enable = Instrument.control(
'*ese?', '*ese %i',
""" Control the standard event status enable. (``*ESE``) """,
validator=truncated_range,
values=[0, 255],
)
power_on_clear = Instrument.control(
'*psc?', '*psc %i',
""" Control the power on clear flag, takes
values True or False. (``*PSC``) """,
validator=strict_discrete_set,
values={True: 1, False: 0},
map_values=True
)
device_operation_enable_register = Instrument.control(
'doe?', 'doe %i',
""" Control the device operation output enable register (DOER) (``DOE?``).
""",
validator=truncated_range,
values=[0, 65535],
)
digital_out_enable_data = Instrument.control(
'dioe?', 'dioe 0,%i',
""" Control the contents of digital out enable data set (``DIOE``).
""",
validator=truncated_range,
values=[0, 65535],
)
status_byte_register = Instrument.measurement(
"*stb?",
""" Measure the contents of the status byte register and MSS bits without
using a serial poll (``*STB?``).
The Status Byte Register has a hierarchical structure. ERR, DOP, ESB,
and COP bits, except RQS and MAV, have lower-level status registers.
Each register is paired with an enable register that can be selected
to output to the Status Byte register or not. The status byte register
also has an enable register, which allows you to select whether or
not to issue a service request SRQ.
.. note::
\\*STB? command can read bit 6 as MSS (logical OR of other bits).
""",
cast=int,
)
event_status_register = Instrument.measurement(
"*esr?",
""" Measure the contents of the standard event status register (SESR) in
the form of a :class:`SESR` ``IntFlag`` (``*ESR?``).
.. note::
SESR is cleared after being read.
""",
values=[0, 255],
get_process=lambda v: SESR(int(v)),
)
device_operation_register = Instrument.measurement(
"doc?",
""" Measure the contents of the device operations register (DOR)
in the form of a :class:`DOR` ``IntFlag`` (``DOC?``).
""",
values=range(0, 65535),
get_process=lambda v: DOR(int(v)),
)
error_register = Instrument.measurement(
"err?",
""" Measure the contents of the error register (``ERR?``).
""",
cast=int,
)
self_test = Instrument.measurement(
"*tst?",
""" A query command that runs a self-test and reads the result (``*TST?``).
""",
cast=int,
)
trigger_link_function_enabled = Instrument.setting(
"tlnk 0,%d",
""" Set a boolean that controls whether the trigger link function is
enabled, takes values of True or False. (``TLNK``)
:type: bool
""",
validator=strict_discrete_set,
values={False: 1, True: 2},
map_values=True
)
display_enabled = Instrument.setting(
"disp 0,%d",
""" Set a boolean that controls whether the display is
on or off, takes values of True or False. (``DISP``)
:type: bool
""",
validator=strict_discrete_set,
values={False: 2, True: 1},
map_values=True
)
line_frequency = Instrument.setting(
"lf 0,%d",
""" Set the used power supply frequency (``LF``) to 50 or 60hz.
With this command, the integration time per PLC for the measurement
will be one cycle of the power supply frequency you are using.
:type: int
""",
validator=strict_discrete_set,
values={50: 1, 60: 2},
map_values=True
)
store_config = Instrument.setting(
"sav %d",
""" Set the memory area for the config to be stored at (``SAV``).
There are five memory areas from 0 to 4 for storing.
:type: int
""",
validator=strict_range,
values=range(0, 4),
)
load_config = Instrument.setting(
"rcl %d",
""" Set the memory area for the config to be loaded from (``RCL``).
There are five areas (0~4) where parameters can be loaded by the RCL command.
:type: int
""",
validator=strict_range,
values=range(0, 4),
)
def set_lo_common_connection_relay(self, enable, lo_relay=None):
""" Turn the connection relay on/off between the A channel
LO (internal analog common) and the LO (internal analog common)
of the B channel (``LTL``).
:param bool enable: A boolean property that controls whether or not the
connection relay is enabled. Valid values are True and False.
:param lo_relay: A boolean property that controls whether or not the internal
analog common relay is enabled. Valid values are True,
False and None (don't change lo relay setting).
:type lo_relay: bool, optional
"""
enable = map_values(enable, {True: 2, False: 1})
lo_relay = map_values(lo_relay, {True: 2, False: 1, None: 3})
self.write(f'ltl 0,{enable},{lo_relay}')
def parse_measurement(self, measurement):
if ' ' in measurement:
measurement = measurement.split(' ')
return (float(measurement[1]), measurement[0])
else:
return (float(measurement), None)
def read_measurement(self):
""" Reads the triggered value, for example triggered by the external input.
"""
return self.parse_measurement(self.read())[0]
class SMUChannel(Channel):
""" Instantiated by main instrument class for every SMUChannel
"""
def __init__(self, parent, id, voltage_range, current_range):
super().__init__(parent, id)
self.voltage_range = voltage_range[id]
self.current_range = current_range[id]
def insert_id(self, command):
return command.format_map({self.placeholder: ord(self.id) - 64})
def clear_measurement_buffer(self):
""" Clears the measurement data buffer (``MBC``). """
self.write('mbc {ch}')
def set_output_type(self, output_type, measurement_type):
""" Sets the output method and type of the GPIB output (``OFM``).
:param output_type: A property that controls the type of output
:type output_type: int or :class:`OutputType`
:param measurement_type: A property that controls the measurement type
:type measurement_type: int or :class:`MeasurementType`
.. note::
For the format of the output data, refer to :meth:`AdvantestR624X.set_output_format`.
For DC and pulse measurements, the output method is fixed to '1' (real-time output).
When the output method '3' (buffering output) is specified, the measured data is not
stored in memory.
"""
output_type = OutputType(output_type)
measurement_type = MeasurementType(measurement_type)
self.write(f'ofm {{ch}},{output_type.value},{measurement_type.value}')
analog_input = Channel.setting(
"fl {ch},%d",
""" Set the analog input terminal (ANALOG INPUT) on the rear panel ON or OFF (``FL``).
:type: int
1. Turn off the analog input.
2. Analog input ON, gain x1.
3. Analog input ON, gain x2.5.
""",
validator=strict_range,
values=range(1, 3),
)
trigger_output_timing = Channel.setting(
"tot {ch},%d",
""" Set the timing of the trigger output signal
output from TRIGGER OUT on the rear panel (``TOT``).
the status in the form of a :class:`TriggerOutputSignalTiming` ``IntFlag``.
:type: :class:`.TriggerOutputSignalTiming`
""",
validator=strict_range,
values=range(0, 63),
# get_process=lambda v: TriggerOutputSignalTiming(int(v)),
)
def set_scanner_control(self, output, interlock):
""" Sets the SCANNER CONTROL (START, STOP)
output signal and INTERLOCK input signal on the rear panel (``SCT``).
:param int output: A property that controls the scanner output
:param int interlock: A property that controls the scanner interlock type
output:
1. Scanner, Turn off the control signal output.
2. Output to the scanner control signal at the start / stop of the sweep.
3. Operate / Standby Scanner, Output to the control signal.
interlock:
1. Turn off the interlock signal input.
2. Set as a stamper when the interlock signal input is HI.
3. When the interlock signal input is HI, it is on standby, and when it is LO, it is
operated.
"""
output = strict_discrete_set(output, [1, 2, 3])
interlock = strict_discrete_set(interlock, [1, 2, 3])
self.write(f'sct {{ch}},{output},{interlock}')
trigger_input = Channel.setting(
"tjm {ch},%d",
""" Set the type of trigger input (``TJM``).
:type: :class:`.TriggerInputType`
+------------------------+---+---+---+
| Trigger input types | 1 | 2 | 3 |
+========================+===+===+===+
| \\*TRG | O | O | X |
+------------------------+---+---+---+
| XE 0 | O | O | X |
+------------------------+---+---+---+
| XE Channel | O | O | O |
+------------------------+---+---+---+
| GET | O | O | X |
+------------------------+---+---+---+
| Trigger input signal | O | X | X |
+------------------------+---+---+---+
O can be used, X cannot be used
.. note::
The sweep operation cannot be started by the trigger input signal.
Be sure to start it with the 'XE' command. Once started, it is
possible to advance the sweep with a trigger input signal.
""",
validator=strict_range,
values=range(1, 3),
# get_process=lambda v: TriggerInputType(int(v)),
)
fast_mode_enabled = Channel.setting(
"fl {ch},%d",
""" Set the channel response mode to fast or slow,
takes values of True or False (``FL``).
:type: bool
""",
validator=strict_discrete_set,
values={False: 2, True: 1},
map_values=True
)
sample_hold_mode = Channel.setting(
"mst {ch},%d",
""" Set the integration time of the measurement (``MST``).
:type: :class:`.SampleHold`
.. note::
- Valid only for pulse measurement and pulse sweep measurement.
- In sample hold mode, the AD transformation is just before the fall
of the pulse width.
- The sample hold mode cannot be set during DC measurement and DC sweep
measurement. When set to sample-and-hold mode, the integration time is 100 µs.
However, in 2-channel synchronous operation, if one channel is in pulse
generation and the other is in sample-and-hold mode, the DC measurement
side also operates in sample-and-hold mode.
- When performing pulse measurement and pulse sweep measurement, it
is necessary to satisfy the restrictions on the pulse width (Tw),
pulse period (Tp), and measure delay time (Td) of the WT command.
If the constraint is not satisfied, the integration time is unchanged.
To lengthen the integration time, first change the pulse width (Tw)
and pulse period (Tp). When shortening the pulse width and pulse
cycle, shorten the integration time first.
""",
validator=strict_discrete_set,
values=[0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
# get_process=lambda v: SampleHold(int(v)),
)
def set_sample_mode(self, mode, auto_sampling=True):
""" Sets synchronous, asynchronous, tracking operation
and search measurement between channels (``JM``).
:param mode: Sample Mode
:type mode: :class:`.SampleMode`
:param auto_sampling: Whether or not auto sampling is enabled, defaults to True
:type auto_sampling: bool, optional
"""
mode = SampleMode(mode)
auto_sampling = map_values(auto_sampling, {True: 1, False: 2})
self.write(f'jm {mode.value},{auto_sampling},{{ch}}')
def set_timing_parameters(self, hold_time, measurement_delay, pulsed_width, pulsed_period):
""" Set the hold time, measuring time, pulse width and the pulse period (``WT``).
:param float hold_time: total amount of time for the complete pulse, until next pulse comes
:param float measurement_delay: time between measurements
:param float pulsed_width: Time specifying the pulse width
:param float pulsed_period: Time specifying the pulse period
.. note::
Pulse measurement has the following restrictions depending on the pulse period (Tp)
setting. (For pulse sweep measurements, there are no restrictions.)
- Tp < 2ms : Not measured.
- 2ms <= Tp < 10ms : Measure once every 5 ~ 20ms.
- 10ms <= Tp: Measured at each pulse generation.
"""
self.write(f"wt {{ch}},{hold_time:.4e},{measurement_delay:.4e},{pulsed_width:.4e},"
"{pulsed_period:.4e}")
def select_for_output(self):
""" This is a query command to select a channel and to
output the measurement data (``FCH?``). When the output channel is selected
by the FCH command, the measured data of the same channel is
returned until the output channel is changed by the next FCH command.
.. note::
Reading measurements with the RMM command does not affect channel
specification with the FCH command. In the default state,
the measurement data of channel A is output.
"""
self.write("fch_0{ch}?")
def trigger(self):
""" Measurement trigger command for sweep, start search measurement or sweep step action
(``XE``).
"""
self.write('xe {ch}')
###############
# Voltage (V) #
###############
def measure_voltage(self, enable=True, internal_measurement=True,
voltage_range=VoltageRange.AUTO):
""" Sets the voltage measurement ON/OFF, measurement input, and
voltage measurement range as parameters (``RV``).
:param enable: boolean property that enables or disables voltage measurement.
Valid values are True (Measure the voltage flowing at the OUTPUT terminal)
and False (Measure the voltage from the rear panel -ANALOG COMMON).
:type enable: bool, optional
:param internal_measurement: A boolean property that enables or disables the internal
measurement.
:type internal_measurement: bool, optional
:param voltage_range: Specifying voltage range
:type voltage_range: :class:`.VoltageRange`, optional
"""
voltage_range = VoltageRange(voltage_range)
enable = map_values(enable, {True: 1, False: 2})
internal_measurement = map_values(internal_measurement, {True: 1, False: 2})
self.write(f'rv {{ch}},{enable},{internal_measurement},{voltage_range.value}')
def voltage_source(self, source_range, source_value, current_compliance):
""" Sets the source range, source value and the current compliance
for the DC (constant voltage) measurement (``DV``).
:param source_range: Specifying source range
:type source_range: :class:`.VoltageRange`
:param float source_value: A number specifying the source voltage value
:param float current_compliance: A number specifying the current compliance
.. note::
Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.
"""
source_range = VoltageRange(source_range)
source_value = truncated_range(source_value, self.voltage_range)
self.write(f'dv {{ch}},{source_range.value},{source_value:.4e},{current_compliance:.4e}')
def voltage_pulsed_source(self, source_range, pulse_value, base_value, current_compliance):
""" Sets the source range, pulse value, base value and the current compliance
of the pulse (voltage) measurement (``PV``).
.. note::
Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.
"""
source_range = VoltageRange(source_range)
pulse_value = truncated_range(pulse_value, self.voltage_range)
base_value = truncated_range(base_value, self.voltage_range)
self.write(f'pv {{ch}},{source_range.value},{pulse_value:.4e},{base_value:.4e},'
'{current_compliance:.4e}')
change_source_voltage = Channel.setting(
"spot {ch},%.4e",
""" Set new target voltage (``SPOT``).
:type: float
.. note::
Only the DC action source value and pulse action pulse value
are changed using the currently set DC action and pulse action parameters.
Measure after the change and set the channel to output the measured data
to the specified ch. In other words, it's the same as running the following
commands:
1. DV/DI/PV/PI
2. XE xx
3. FCH xx
""",
)
def voltage_fixed_level_sweep(
self, voltage_range, voltage_level, measurement_count, current_compliance, bias=0):
""" Sets the fixed level sweep (voltage) generation range, level value,
current compliance and the bias value (``FXV``).
.. note::
Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.
"""
voltage_range = VoltageRange(voltage_range)
voltage_level = truncated_range(voltage_level, self.voltage_range)
self.write(f'fxv {{ch}},{voltage_range.value},{voltage_level:.4e},'
'{measurement_count},{current_compliance:.4e},{bias:.4e}')
def voltage_fixed_pulsed_sweep(
self, voltage_range, pulse, base, measurement_count, current_compliance, bias=0):
""" Sets the fixed pulse (voltage) sweep generation range,
pulse value, base value, number of measurements, current compliance and the bias value
(``PXV``).
.. note::
Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.
"""
voltage_range = VoltageRange(voltage_range)
pulse = truncated_range(pulse, self.voltage_range)
base = truncated_range(base, self.voltage_range)
self.write(f'pxv {{ch}},{voltage_range.value},{pulse:.4e},{base:.4e},'
'{measurement_count},{current_compliance:.4e},{bias:.4e}')
def voltage_sweep(
self, sweep_mode, repeat, voltage_range, start_value, stop_value, steps,
current_compliance, bias=0):
""" Sets the sweep mode, number of repeats, source range,
start value, stop value, number of steps, current compliance,
and the bias value for staircase (linear/log) voltage sweep (``WV``).
.. note::
- Sweep mode, number of repeats, and number of steps are subject to the following
restrictions.
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2 m x number
of refreshes x N <= 2048
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
- The current compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
steps = truncated_range(steps, [2, 2048])
voltage_range = VoltageRange(voltage_range)
self.write(f'wv {{ch}},{sweep_mode.value},{repeat},{voltage_range.value},'
'{start_value:.4e},{stop_value:.4e},{steps}, '
'{current_compliance:.4e},{bias:.4e}')
def voltage_pulsed_sweep(
self, sweep_mode, repeat, voltage_range, base, start_value, stop_value, steps,
current_compliance, bias=0):
""" Sets the sweep mode, repeat count, generation range,
base value, start value, stop value, number of steps, current compliance
and the bias value for a pulse wave (linear/log) voltage sweep (``PWV``).
.. note::
- The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2 m x number
of refreshes x N <= 2048
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- For the current compliance polarity, regardless of the specified current compliance
polarity, the compliance of both polarities (+ and -) is set.
- The current compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
steps = truncated_range(steps, [2, 2048])
voltage_range = VoltageRange(voltage_range)
self.write(f'pwv {{ch}},{sweep_mode.value},{repeat},{voltage_range.value},{base:.4e},'
'{start_value:.4e},{stop_value:.4e},{steps},{current_compliance:.4e},'
'{bias:.4e}')
def voltage_random_sweep(
self, sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0):
""" Sets the sweep mode, repeat count, start address, stop address,
current compliance and the bias value of constant voltage random sweep (``MDWV``).
.. note::
- Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:
- Start address < Stop address
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2 m x number of
refreshes x N <= 2048
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
- The current compliance range is automatically set to the minimum range that includes the
set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
start_address = truncated_range(start_address, [1, 2048])
stop_address = truncated_range(stop_address, [1, 2048])
self.write(f'mdwv {{ch}},{sweep_mode.value},{repeat},{start_address},{stop_address},'
'{current_compliance:.4e},{bias:.4e}')
def voltage_random_pulsed_sweep(
self, sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0):
""" Sets the sweep mode, repeat count, base value, start address,
stop address, current compliance and the bias value of the constant voltage random pulse
sweep (``MPWV``).
.. note::
- Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:
- Start address < Stop address
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2 m x number of
refreshes x N <= 2048
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
- The current compliance range is automatically set to the minimum range that includes the
set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
start_address = truncated_range(start_address, [1, 2048])
stop_address = truncated_range(stop_address, [1, 2048])
self.write(f'mpwv {{ch}},{sweep_mode.value},{repeat},{start_address},{stop_address},'
'{current_compliance:.4e},{bias:.4e}')
def voltage_set_random_memory(self, address, voltage_range, output, current_compliance):
""" The command stores the specified value to the randomly generated data memory (``RMS``).
Stored generated values are swept within the specified memory
address range by the MDWV, MDWI, MPWV, MPWI commands.
"""
voltage_range = VoltageRange(voltage_range)
address = truncated_range(address, [1, 2048])
self.write(f'rms {address};dv{{ch}},{voltage_range.value},{output:.4e},'
'{current_compliance:.4e};rend')
###############
# Current (A) #
###############
def current_source(self, source_range, source_value, voltage_compliance):
""" Sets the source range, source value, voltage compliance
of the DC (constant current) measurement (``DI``).
:param source_range: Specifying source range
:type source_range: :class:`.CurrentRange`
:param float source_value: A number specifying the source current value
:param float voltage_compliance: A number specifying the voltage compliance
.. note::
Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.
"""
source_range = CurrentRange(source_range)
source_value = truncated_range(source_value, self.current_range)
self.write(f'di {{ch}},{source_range.value},{source_value:.4e},{voltage_compliance:.4e}')
def current_pulsed_source(self, source_range, pulse_value, base_value, voltage_compliance):
""" Sets the source range, pulse value, base value and the voltage compliance
of the pulse (current) measurement (``PI``).
.. note::
Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.
"""
source_range = CurrentRange(source_range)
pulse_value = truncated_range(pulse_value, self.current_range)
base_value = truncated_range(base_value, self.current_range)
self.write(f'pi {{ch}},{source_range.value},{pulse_value:.4e},{base_value:.4e},'
'{voltage_compliance:.4e}')
change_source_current = Channel.setting(
"spot {ch},%.4e",
""" Set new target current (``SPOT``).
:type: float
.. note::
Only the DC action source value and pulse action pulse value
are changed using the currently set DC action and pulse action parameters.
Measure after the change and set the channel to output the measured data
to the specified ch. In other words, it's the same as running the following
commands:
1. DV/DI/PV/PI
2. XE xx
3. FCH xx
"""
)
def current_fixed_level_sweep(
self, current_range, current_level, measurement_count, voltage_compliance, bias=0):
""" Sets the fixed level sweep (current) generation range, level value,
voltage compliance and the bias value (``FXI``).
.. note::
Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.
"""
current_range = CurrentRange(current_range)
self.write(f'fxi {{ch}},{current_range.value},{current_level:.4e},{measurement_count},'
'{voltage_compliance:.4e},{bias:.4e}')
def current_fixed_pulsed_sweep(
self, current_range, pulse, base, measurement_count, voltage_compliance, bias=0):
""" Sets the fixed pulse (current) sweep generation range,
pulse value, base value, number of measurements, voltage compliance and the bias value
(``PXI``).
.. note::
Regardless of the specified voltage compliance polarity, both polarities of + and - are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.
"""
current_range = CurrentRange(current_range)
self.write(f'pxi {{ch}},{current_range.value},{pulse:.4e},{base:.4e},{measurement_count},'
'{voltage_compliance:.4e},{bias:.4e}')
def current_sweep(
self, sweep_mode, repeat, current_range, start_value, stop_value, steps,
voltage_compliance, bias=0):
""" Sets the sweep mode, number of repeats, source range,
start value, stop value, number of steps, voltage compliance
and bias value for the staircase (linear/log) current sweep (``WI``).
.. note::
- The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2, m x number
of repeats x N <= 2048.
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
- The voltage compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
steps = truncated_range(steps, [2, 2048])
current_range = CurrentRange(current_range)
self.write(f'wi {{ch}},{sweep_mode.value},{repeat},{current_range.value},'
'{start_value:.4e},{stop_value:.4e},{steps},{voltage_compliance:.4e},'
'{bias:.4e}')
def current_pulsed_sweep(
self, sweep_mode, repeat, current_range, base, start_value, stop_value, steps,
voltage_compliance, bias=0):
""" Sets the sweep mode, repeat count, generation range,
base value, start value, stop value, number of steps, voltage compliance
and the bias value for a pulse wave (linear/log) current sweep (``PWI``).
.. note::
- The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:
- Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).
- When the OFM command sets the output data output method to 1 or 2, m x number
of repeats x N <= 2048.
- m x N <= 2048 when the OFM command sets the output data output method to 3.
- Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
- The voltage compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
steps = truncated_range(steps, [2, 2048])
current_range = CurrentRange(current_range)
self.write(
f'pwi {{ch}},{sweep_mode.value},{repeat},{current_range.value},{base:.4e},'
'{start_value:.4e},{stop_value:.4e},{steps},{voltage_compliance:.4e},{bias:.4e}')
def measure_current(self, enable=True, internal_measurement=True,
current_range=CurrentRange.AUTO):
""" Set the current measurement ON/OFF, measurement input, and current measurement range as
parameters (``RI``).
:param enable: boolean property that enables or disables current measurement.
Valid values are True (Measure the current flowing at the OUTPUT terminal) and False
(Measure the current from the rear panel -ANALOG COMMON).
:type enable: bool, optional
:param internal_measurement: A boolean property that enables or disables the internal
measurement.
:type internal_measurement: bool, optional
:param current_range: Specifying voltage range
:type current_range: :class:`.CurrentRange`, optional
"""
current_range = CurrentRange(current_range)
enable = map_values(enable, {True: 1, False: 2})
internal_measurement = map_values(internal_measurement, {True: 1, False: 2})
self.write(f'ri {{ch}},{enable},{internal_measurement},{current_range.value}')
def current_random_sweep(
self, sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0):
""" Sets the sweep mode, repeat count, start address,
stop address, voltage compliance and the bias value of constant current random sweep
(``MDWI``).
.. note::
- Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:
- Start address < Stop address
- Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2
(round-trip sweep).
- When the output data output method is set to 1 or 2 with the OFM command m x
number of repeats x N <= 2048
- When the output data output method is set to 3 with the OFM command m x N <=
2048
- For the voltage compliance polarity, regardless of the specified voltage compliance
polarity, both polarities of + and – are set.
- The voltage compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
start_address = truncated_range(start_address, [1, 2048])
stop_address = truncated_range(stop_address, [1, 2048])
self.write(
f'mdwi {{ch}},{sweep_mode.value},{repeat},{start_address},{stop_address},'
'{current_compliance:.4e},{bias:.4e}')
def current_random_pulsed_sweep(
self, sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0):
""" Sets the sweep mode, repeat count, base value, start address,
stop address, voltage compliance and the bias value of constant current random pulse sweep
(``MPWI``).
.. note::
- Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:
- Start address < Stop address
- Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2
(round-trip sweep).
- When the output data output method is set to 1 or 2 with the OFM command m x
number of repeats x N <= 2048
- When the output data output method is set to 3 with the OFM command m x N <=
2048
- For the voltage compliance polarity, regardless of the specified voltage compliance
polarity, both polarities of + and – are set.
- The voltage compliance range is automatically set to the minimum range that includes
the set value.
"""
sweep_mode = SweepMode(sweep_mode)
repeat = truncated_range(repeat, [0, 1024])
start_address = truncated_range(start_address, [1, 2048])
stop_address = truncated_range(stop_address, [1, 2048])
self.write(
f'mpwi {{ch}},{sweep_mode.value},{repeat},{start_address},{stop_address},'
'{current_compliance:.4e},{bias:.4e}')
def current_set_random_memory(self, address, current_range, output, voltage_compliance):
""" Store the current parameters to randomly generated data memory (``RMS``).
Stored generated values are swept within the specified memory
address range by the MDWV, MDWI, MPWV, MPWI commands.
"""
current_range = CurrentRange(current_range)
address = truncated_range(address, [1, 2048])
self.write(
f'rms {address};di{{ch}},{current_range.value},{output:.4e},'
'{voltage_compliance:.4e};rend')
def read_random_memory(self, address):
""" Return memory specified by address location (``RMS?``).
:param int address: Adress to specify memory location.
:returns: Set values returned by the device from the specified address location.
:rtype: str
"""
address = truncated_range(address, [1, 2048])
return self.ask(f'rms_1{{ch}}? {address}')
def enable_source(self):
""" Put the specified channel into an operating state (``CN``).
"""
self.write('cn {ch}')
def standby(self):
""" Put the specified channel into standby state (``CL``).
"""
self.write('cl {ch}')
def stop(self):
""" Stops the sweep when the sweep is started by the
XE command or the trigger input signal (``SP``).
"""
self.write('sp {ch}')
def output_all_measurements(self):
""" Output all measurements in the measurement
data buffer of the specified channel (``RMM?``).
.. note::
For the output format, refer to :meth:`AdvantestR624X.set_output_format`.
When a memory address where no measurement data is stored is read, 999.999E+99 will be
returned.
"""
self.write('rmm_0{ch}?')
def read_measurement_from_addr(self, addr):
""" Output only one measurement at the specified
memory address from the measurement data buffer of the specified channel.
:param int addr: Specifies the address to read from.
:return: float Measurement data
.. note::
For the output format, refer to :meth:`AdvantestR624X.set_output_format`.
When a memory address where no measurement data is stored is read, 999.999E+99 will be
returned.
"""
measurement = self.ask(f'rmm_1{{ch}}? {addr}')
return self.parent.parse_measurement(measurement)
measurement_count = Channel.measurement(
"nub_0{ch}?",
""" Measaure the number of measurements contained in the measurement
data buffer (``NUB?``). """,
cast=int
)
null_operation_enabled = Channel.setting(
"nug {ch},%d",
""" Set a boolean that controls whether the null operation
is enabled, takes values of True or False (``NUG``).
:type: bool
.. Acquisition timing of null data::
- Null data captures the next measurement data for which null computation is
enabled as null data during DC measurement or pulse measurement.
- A sweep operation does not capture null data.
- If null calculation is enabled during sweep operation, null data obtained
by DC operation or pulse operation will be used for calculation.
- Indicates the timing of null data acquisition during DC operation.
.. note::
- Null data is not rewritten even if the null operation is disabled.
- Null data is rewritten only when null operation is changed from OFF to ON or
initialized in case of DC operation or pulse operation.
""",
validator=strict_discrete_set,
values={False: 1, True: 2},
map_values=True
)
def set_wire_mode(self, four_wire, lo_guard=True):
""" Used to switch remote sense and to set the LO-GUARD relay ON/OFF.
It operates regardless of operating state or standby state (``OSL``).
:param bool four_wire: A boolean property that enables or disables four wire measurements.
Valid values are True (enables 4-wire sensing) and False (enables two-terminal sensing).
:param bool lo_guard: A boolean property that enables or disables the LO-GUARD relay.
"""
four_wire = map_values(four_wire, {True: 1, False: 2})
lo_guard = map_values(lo_guard, {True: 1, False: 2})
self.write(f'osl {{ch}},{four_wire},{lo_guard}')
auto_zero_enabled = Channel.setting(
"cm {ch},%d",
""" Set the auto zero option to ON or OFF. Valid values are
True (enabled) and False (disabled) (``CM``).
:type: bool
This command sets auto zero (automatically calibrate the
zero point of the measured value operation.
1. Periodically perform auto zero.
2. Auto zero once, no periodic auto zeros thereafter.
When the auto zero mode is set to True, the following operations are performed.
- For DC operation and pulse operation:
- At the end of one sweep, if he has exceeded the last autozero by more than 10 seconds,
he will do one autozero.
- If sweep start is specified during auto zero, the sweep will start after auto zero
ends.
- Sweep operation
- Auto zero is performed once every 10 seconds.
- If measurement or pulse output is specified during auto zero, it will be executed
after auto zero ends.
""",
validator=strict_discrete_set,
values={False: 2, True: 1},
map_values=True
)
def set_comparison_limits(self, comparison, voltage_value, upper_limit, lower_limit):
""" Sets the channel ON/OFF based on the measurement comparison
and the data of the upper and lower limits to be compared (``CMD``).
:param bool comparison: A boolean property that controls whether or not
the comparison function is enabled. Valid values are True or False.
:param bool voltage_value: A boolean property that controls whether or not
voltage or current values are passed. Valid values are True or False.
:param float upper_limit: Number specifying the upper comparison limit
:param float lower_limit: Number specifying the lower comparison limit
"""
comparison = map_values(comparison, {True: 2, False: 1})
voltage_value = map_values(voltage_value, {True: 1, False: 2})
self.write(f'cmd {{ch}},{comparison},{voltage_value},{upper_limit:.4e},{lower_limit:.4e}')
relay_mode = Channel.setting(
"opm {ch},%d",
""" Set the HI/LO relays for standby mode.
This command does not operate the Operate Relay (``OPM``).
:type: int
1. When executing an operation only the HI side turns ON, in standby both HI and LO are
turned OFF.
2. When executing an operation only the LO side turns ON, in standby both HI and LO are
turned OFF.
3. When executing an operation both HI and LO turn ON, in standby both HI and LO are turned
OFF.
4. When executing an operation only the HI side turns ON, in standby only the HI side is
turned OFF.
""",
validator=strict_range,
values=range(1, 4),
)
operation_register = Channel.measurement(
"coc_0{ch}?",
""" Measure the contents of the Channel Operations Register (COR)
in the form of a :class:`COR` ``IntFlag`` (``COC?``).
""",
values=range(0, 65535),
get_process=lambda v: COR(int(v)),
)
output_enable_register = Channel.control(
"coe_0{ch}?",
"coe_0{ch} %d",
""" Control the settings of the channel operation output enable
register (COER) in the form of a :class:`COR` IntFlag ?(``COE?``).
""",
validator=strict_range,
values=range(0, 65535),
get_process=lambda v: COR(int(v)),
)
def calibration_init(self):
""" Initialize the calibration data (``CINI``). """
self.write('cini {ch}')
def calibration_store_factor(self):
""" Store the calibration factor
in the non-volatile memory (EEPROM) (``CSRT``). """
self.write('csrt {ch}')
calibration_measured_value = Channel.setting(
"std {ch},%.4e",
""" Set the measured value measured by an external standard
for the generated value of this instrument and start calibration (``STD``).
:type: float
""",
)
calibration_generation_factor = Channel.setting(
"ccs {ch},%.4e",
""" Set the increment or decrement for the generation
calibration factor of the current generation range (``CCS``). It is used when
the generated value deviates from the true value.
:type: float
""",
)
calibration_factor = Channel.setting(
"ccm {ch},%.4e",
""" Set the increment of the measurement calibration
factor of the current measurement range (``CCM``).
:type: float
""",
)
class AdvantestR6245(AdvantestR624X):
""" Main instrument class for Advantest R6245 DC Voltage/Current Source/Monitor
"""
voltage_range = {'A': [-220.0, 220.0], 'B': [-220.0, 220.0]}
current_range = {'A': [-2.0, 2.0], 'B': [-2.0, 2.0]}
ch_A = Instrument.ChannelCreator(SMUChannel, 'A',
voltage_range=voltage_range,
current_range=current_range)
ch_B = Instrument.ChannelCreator(SMUChannel, 'B',
voltage_range=voltage_range,
current_range=current_range)
def __init__(self, adapter, name="Advantest R6245 SourceMeter", **kwargs):
kwargs
super().__init__(
adapter,
name,
**kwargs
)
class AdvantestR6246(AdvantestR624X):
""" Main instrument class for Advantest R6246 DC Voltage/Current Source/Monitor
"""
voltage_range = {'A': [-62.0, 62.0], 'B': [-220.0, 220.0]}
current_range = {'A': [-20.0, 20.0], 'B': [-2.0, 2.0]}
ch_A = Instrument.ChannelCreator(SMUChannel, 'A',
voltage_range=voltage_range,
current_range=current_range)
ch_B = Instrument.ChannelCreator(SMUChannel, 'B',
voltage_range=voltage_range,
current_range=current_range)
def __init__(self, adapter, name="Advantest R6246 SourceMeter", **kwargs):
super().__init__(
adapter,
name,
**kwargs
)
|