File: agilent33500.py

package info (click to toggle)
python-pymeasure 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,788 kB
  • sloc: python: 47,201; makefile: 155
file content (810 lines) | stat: -rw-r--r-- 32,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#

# Parts of this code were copied and adapted from the Agilent33220A class.

import logging
from pymeasure.instruments import Instrument, Channel, SCPIUnknownMixin
from pymeasure.instruments.validators import strict_discrete_set, strict_range
from time import time
from pyvisa.errors import VisaIOError

log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())


# Capitalize string arguments to allow for better conformity with other WFG's
# FIXME: Currently not used since it does not combine well with the strict_discrete_set validator
# def capitalize_string(string: str, *args, **kwargs):
#     return string.upper()


# Combine the capitalize function and validator
# FIXME: This validator is not doing anything other then self.capitalize_string
# FIXME: I removed it from this class for now
# string_validator = joined_validators(capitalize_string, strict_discrete_set)


class Agilent33500Channel(Channel):
    """Implementation of a base Agilent 33500 channel"""

    shape = Instrument.control(
        "SOUR{ch}:FUNC?",
        "SOUR{ch}:FUNC %s",
        """ A string property that controls the output waveform. Can be set to:
        SIN<USOID>, SQU<ARE>, TRI<ANGLE>, RAMP, PULS<E>, PRBS,  NOIS<E>, ARB, DC. """,
        validator=strict_discrete_set,
        values=["SIN", "SQU", "TRI", "RAMP", "PULS", "PRBS", "NOIS", "ARB", "DC"],
    )

    frequency = Instrument.control(
        "SOUR{ch}:FREQ?",
        "SOUR{ch}:FREQ %f",
        """ A floating point property that controls the frequency of the output
        waveform in Hz, from 1 uHz to 120 MHz (maximum range, can be lower depending
        on your device), depending on the specified function. """,
        validator=strict_range,
        values=[1e-6, 120e6],
    )

    amplitude = Instrument.control(
        "SOUR{ch}:VOLT?",
        "SOUR{ch}:VOLT %f",
        """ A floating point property that controls the voltage amplitude of the
        output waveform in V, from 10e-3 V to 10 V. Depends on the output
        impedance.""",
        validator=strict_range,
        values=[10e-3, 10],
    )

    amplitude_unit = Instrument.control(
        "SOUR{ch}:VOLT:UNIT?",
        "SOUR{ch}:VOLT:UNIT %s",
        """ A string property that controls the units of the amplitude. Valid
        values are VPP (default), VRMS, and DBM.""",
        validator=strict_discrete_set,
        values=["VPP", "VRMS", "DBM"],
    )

    offset = Instrument.control(
        "SOUR{ch}:VOLT:OFFS?",
        "SOUR{ch}:VOLT:OFFS %f",
        """ A floating point property that controls the voltage offset of the
        output waveform in V, from 0 V to 4.995 V, depending on the set
        voltage amplitude (maximum offset = (Vmax - voltage) / 2).
        """,
        validator=strict_range,
        values=[-4.995, +4.995],
    )

    voltage_high = Instrument.control(
        "SOUR{ch}:VOLT:HIGH?",
        "SOUR{ch}:VOLT:HIGH %f",
        """ A floating point property that controls the upper voltage of the
        output waveform in V, from -4.999 V to 5 V (must be higher than low
        voltage by at least 1 mV).""",
        validator=strict_range,
        values=[-4.999, 5],
    )

    voltage_low = Instrument.control(
        "SOUR{ch}:VOLT:LOW?",
        "SOUR{ch}:VOLT:LOW %f",
        """ A floating point property that controls the lower voltage of the
        output waveform in V, from -5 V to 4.999 V (must be lower than high
        voltage by at least 1 mV).""",
        validator=strict_range,
        values=[-5, 4.999],
    )

    phase = Instrument.control(
        "SOUR{ch}:PHAS?",
        "SOUR{ch}:PHAS %f",
        """ A floating point property that controls the phase of the output
        waveform in degrees, from -360 degrees to 360 degrees. Not available
        for arbitrary waveforms or noise.""",
        validator=strict_range,
        values=[-360, 360],
    )

    square_dutycycle = Instrument.control(
        "SOUR{ch}:FUNC:SQU:DCYC?",
        "SOUR{ch}:FUNC:SQU:DCYC %f",
        """ A floating point property that controls the duty cycle of a square
        waveform function in percent, from 0.01% to 99.98%.
        The duty cycle is limited by the frequency and the minimal pulse width of
        16 ns. See manual for more details.""",
        validator=strict_range,
        values=[0.01, 99.98],
    )

    ramp_symmetry = Instrument.control(
        "SOUR{ch}:FUNC:RAMP:SYMM?",
        "SOUR{ch}:FUNC:RAMP:SYMM %f",
        """ A floating point property that controls the symmetry percentage
        for the ramp waveform, from 0.0% to 100.0%.""",
        validator=strict_range,
        values=[0, 100],
    )

    pulse_period = Instrument.control(
        "SOUR{ch}:FUNC:PULS:PER?",
        "SOUR{ch}:FUNC:PULS:PER %e",
        """ A floating point property that controls the period of a pulse
        waveform function in seconds, ranging from 33 ns to 1 Ms. Can be set
        and overwrites the frequency for *all* waveforms. If the period is
        shorter than the pulse width + the edge time, the edge time and pulse
        width will be adjusted accordingly. """,
        validator=strict_range,
        values=[33e-9, 1e6],
    )

    pulse_hold = Instrument.control(
        "SOUR{ch}:FUNC:PULS:HOLD?",
        "SOUR{ch}:FUNC:PULS:HOLD %s",
        """ A string property that controls if either the pulse width or the
        duty cycle is retained when changing the period or frequency of the
        waveform. Can be set to: WIDT<H> or DCYC<LE>. """,
        validator=strict_discrete_set,
        values=["WIDT", "WIDTH", "DCYC", "DCYCLE"],
    )

    pulse_width = Instrument.control(
        "SOUR{ch}:FUNC:PULS:WIDT?",
        "SOUR{ch}:FUNC:PULS:WIDT %e",
        """ A floating point property that controls the width of a pulse
        waveform function in seconds, ranging from 16 ns to 1e6 s, within a
        set of restrictions depending on the period.""",
        validator=strict_range,
        values=[16e-9, 1e6],
    )

    pulse_dutycycle = Instrument.control(
        "SOUR{ch}:FUNC:PULS:DCYC?",
        "SOUR{ch}:FUNC:PULS:DCYC %f",
        """ A floating point property that controls the duty cycle of a pulse
        waveform function in percent, from 0% to 100%.""",
        validator=strict_range,
        values=[0, 100],
    )

    pulse_transition = Instrument.control(
        "SOUR{ch}:FUNC:PULS:TRAN?",
        "SOUR{ch}:FUNC:PULS:TRAN:BOTH %e",
        """ A floating point property that controls the edge time in
        seconds for both the rising and falling edges. It is defined as the
        time between the 10% and 90% thresholds of the edge.
        Valid values are between 8.4 ns to 1 µs.""",
        validator=strict_range,
        values=[8.4e-9, 1e-6],
    )

    output = Instrument.control(
        "OUTP{ch}?",
        "OUTP{ch} %d",
        """ A boolean property that turns on (True, 'on') or off (False, 'off')
        the output of the function generator.""",
        validator=strict_discrete_set,
        map_values=True,
        values={True: 1, "on": 1, "ON": 1, False: 0, "off": 0, "OFF": 0},
    )

    output_load = Instrument.control(
        "OUTP{ch}:LOAD?",
        "OUTP{ch}:LOAD %s",
        """ Sets the expected load resistance (should be the load impedance connected
        to the output. The output impedance is always 50 Ohm, this setting can be used
        to correct the displayed voltage for loads unmatched to 50 Ohm.
        Valid values are between 1 and 10 kOhm or INF for high impedance.
        No validator is used since both numeric and string inputs are accepted,
        thus a value outside the range will not return an error.
        """,
    )

    burst_state = Instrument.control(
        "SOUR{ch}:BURS:STAT?",
        "SOUR{ch}:BURS:STAT %d",
        """ A boolean property that controls whether the burst mode is on
        (True) or off (False).""",
        validator=strict_discrete_set,
        map_values=True,
        values={True: 1, False: 0},
    )

    burst_mode = Instrument.control(
        "SOUR{ch}:BURS:MODE?",
        "SOUR{ch}:BURS:MODE %s",
        """ A string property that controls the burst mode. Valid values
        are: TRIG<GERED>, GAT<ED>.""",
        validator=strict_discrete_set,
        values=["TRIG", "TRIGGERED", "GAT", "GATED"],
    )

    burst_period = Instrument.control(
        "SOUR{ch}:BURS:INT:PER?",
        "SOUR{ch}:BURS:INT:PER %e",
        """ A floating point property that controls the period of subsequent bursts.
        Has to follow the equation burst_period > (burst_ncycles / frequency) + 1 µs.
        Valid values are 1 µs to 8000 s.""",
        validator=strict_range,
        values=[1e-6, 8000],
    )

    burst_ncycles = Instrument.control(
        "SOUR{ch}:BURS:NCYC?",
        "SOUR{ch}:BURS:NCYC %d",
        """ An integer property that sets the number of cycles to be output
        when a burst is triggered. Valid values are 1 to 100000. This can be
        set. """,
        validator=strict_range,
        values=range(1, 100000),
    )

    arb_file = Instrument.control(
        "SOUR{ch}:FUNC:ARB?",
        "SOUR{ch}:FUNC:ARB %s",
        """ A string property that selects the arbitrary signal from the volatile
        memory of the device. String has to match an existing arb signal in volatile
        memory (set by :meth:`data_arb`).""",
    )

    arb_advance = Instrument.control(
        "SOUR{ch}:FUNC:ARB:ADV?",
        "SOUR{ch}:FUNC:ARB:ADV %s",
        """ A string property that selects how the device advances from data point
        to data point. Can be set to 'TRIG<GER>' or 'SRAT<E>' (default). """,
        validator=strict_discrete_set,
        values=["TRIG", "TRIGGER", "SRAT", "SRATE"],
    )

    arb_filter = Instrument.control(
        "SOUR{ch}:FUNC:ARB:FILT?",
        "SOUR{ch}:FUNC:ARB:FILT %s",
        """ A string property that selects the filter setting for arbitrary signals.
        Can be set to 'NORM<AL>', 'STEP' and 'OFF'. """,
        validator=strict_discrete_set,
        values=["NORM", "NORMAL", "STEP", "OFF"],
    )

    arb_srate = Instrument.control(
        "SOUR{ch}:FUNC:ARB:SRAT?",
        "SOUR{ch}:FUNC:ARB:SRAT %f",
        """ An floating point property that sets the sample rate of the currently selected
        arbitrary signal. Valid values are 1 µSa/s to 250 MSa/s (maximum range, can be lower
        depending on your device).""",
        validator=strict_range,
        values=[1e-6, 250e6],
    )

    def data_volatile_clear(self):
        """
        Clear all arbitrary signals from volatile memory for a given channel.

        This should be done if the same name is used continuously to load
        different arbitrary signals into the memory, since an error will occur
        if a trace is loaded which already exists in memory.
        """
        self.write("SOUR{ch}:DATA:VOL:CLE")

    def data_arb(self, arb_name, data_points, data_format="DAC"):
        """
        Uploads an arbitrary trace into the volatile memory of the device for a given channel.

        The data_points can be given as:
        comma separated 16 bit DAC values (ranging from -32767 to +32767),
        as comma separated floating point values (ranging from -1.0 to +1.0),
        or as a binary data stream.
        Check the manual for more information. The storage depends on the device type and ranges
        from 8 Sa to 16 MSa (maximum).

        :param arb_name: The name of the trace in the volatile memory. This is used to access the
                         trace.

        :param data_points: Individual points of the trace. The format depends on the format
                            parameter.

                            format = 'DAC' (default): Accepts list of integer values ranging from
                            -32767 to +32767. Minimum of 8 a maximum of 65536 points.

                            format = 'float': Accepts list of floating point values ranging from
                            -1.0 to +1.0. Minimum of 8 a maximum of 65536 points.

                            format = 'binary': Accepts a binary stream of 8 bit data.
        :param data_format: Defines the format of data_points. Can be 'DAC' (default), 'float' or
                            'binary'. See documentation on parameter data_points above.
        """
        if data_format == "DAC":
            separator = ", "
            data_points_str = [str(item) for item in data_points]  # Turn list entries into strings
            data_string = separator.join(data_points_str)  # Join strings with separator
            self.write(f"SOUR{{ch}}:DATA:ARB:DAC {arb_name}, {data_string}")
            return
        elif data_format == "float":
            separator = ", "
            data_points_str = [str(item) for item in data_points]  # Turn list entries into strings
            data_string = separator.join(data_points_str)  # Join strings with separator
            self.write(f"SOUR{{ch}}:DATA:ARB {arb_name}, {data_string}")
            return
        elif data_format == "binary":  # TODO: *Binary is not yet implemented*
            raise NotImplementedError(
                'The binary format has not yet been implemented. Use "DAC" or "float" instead.'
            )
        else:
            raise ValueError(
                'Undefined format keyword was used. Valid entries are "DAC", "float" and "binary"'
            )


class Agilent33500(SCPIUnknownMixin, Instrument):
    """
    Represents the Agilent 33500 Function/Arbitrary Waveform Generator family.

    Individual devices are represented by subclasses.
    User can specify a channel to control, if no channel specified, a default channel
    is picked based on the device e.g. For Agilent33500B the default channel
    is channel 1. See reference manual for your device

    .. code-block:: python

        generator = Agilent33500("GPIB::1")

        generator.shape = 'SIN'                 # Sets default channel output signal shape to sine
        generator.channels[1].shape = 'SIN'           # Sets channel 1 output signal shape to sine
        generator.frequency = 1e3               # Sets default channel output frequency to 1 kHz
        generator.channels[1].frequency = 1e3         # Sets channel 1 output frequency to 1 kHz
        generator.channels[2].amplitude = 5           # Sets channel 2 output amplitude to 5 Vpp
        generator.channels[2].output = 'on'           # Enables channel 2 output

        generator.channels[1].shape = 'ARB'           # Set channel 1 shape to arbitrary
        generator.channels[1].arb_srate = 1e6         # Set channel 1 sample rate to 1MSa/s

        generator.channels[1].data_volatile_clear()   # Clear channel 1 volatile internal memory
        generator.channels[1].data_arb(               # Send data of arbitrary waveform to channel 1
            'test',
            range(-10000, 10000, +20),          # In this case a simple ramp
            data_format='DAC'                   # Data format is set to 'DAC'
         )
        generator.channels[1].arb_file = 'test'       # Select the transmitted waveform 'test'

    """

    ch_1 = Instrument.ChannelCreator(Agilent33500Channel, 1)

    ch_2 = Instrument.ChannelCreator(Agilent33500Channel, 2)

    def __init__(self, adapter, name="Agilent 33500 Function/Arbitrary Waveform generator family",
                 **kwargs):
        super().__init__(
            adapter, name, **kwargs
        )

    def beep(self):
        """Causes a system beep."""
        self.write("SYST:BEEP")

    shape = Instrument.control(
        "FUNC?",
        "FUNC %s",
        """ A string property that controls the output waveform. Can be set to:
        SIN<USOID>, SQU<ARE>, TRI<ANGLE>, RAMP, PULS<E>, PRBS,  NOIS<E>, ARB, DC. """,
        validator=strict_discrete_set,
        values=["SIN", "SQU", "TRI", "RAMP", "PULS", "PRBS", "NOIS", "ARB", "DC"],
    )

    frequency = Instrument.control(
        "FREQ?",
        "FREQ %f",
        """ A floating point property that controls the frequency of the output
        waveform in Hz, from 1 uHz to 120 MHz (maximum range, can be lower depending
        on your device), depending on the specified function.""",
        validator=strict_range,
        values=[1e-6, 120e6],
    )

    amplitude = Instrument.control(
        "VOLT?",
        "VOLT %f",
        """ A floating point property that controls the voltage amplitude of the
        output waveform in V, from 10e-3 V to 10 V. Depends on the output
        impedance.""",
        validator=strict_range,
        values=[10e-3, 10],
    )

    amplitude_unit = Instrument.control(
        "VOLT:UNIT?",
        "VOLT:UNIT %s",
        """ A string property that controls the units of the amplitude. Valid
        values are VPP (default), VRMS, and DBM.""",
        validator=strict_discrete_set,
        values=["VPP", "VRMS", "DBM"],
    )

    offset = Instrument.control(
        "VOLT:OFFS?",
        "VOLT:OFFS %f",
        """ A floating point property that controls the voltage offset of the
        output waveform in V, from 0 V to 4.995 V, depending on the set
        voltage amplitude (maximum offset = (Vmax - voltage) / 2).
        """,
        validator=strict_range,
        values=[-4.995, +4.995],
    )

    voltage_high = Instrument.control(
        "VOLT:HIGH?",
        "VOLT:HIGH %f",
        """ A floating point property that controls the upper voltage of the
        output waveform in V, from -4.999 V to 5 V (must be higher than low
        voltage by at least 1 mV).""",
        validator=strict_range,
        values=[-4.999, 5],
    )

    voltage_low = Instrument.control(
        "VOLT:LOW?",
        "VOLT:LOW %f",
        """ A floating point property that controls the lower voltage of the
        output waveform in V, from -5 V to 4.999 V (must be lower than high
        voltage by at least 1 mV).""",
        validator=strict_range,
        values=[-5, 4.999],
    )

    phase = Instrument.control(
        "PHAS?",
        "PHAS %f",
        """ A floating point property that controls the phase of the output
        waveform in degrees, from -360 degrees to 360 degrees. Not available
        for arbitrary waveforms or noise.""",
        validator=strict_range,
        values=[-360, 360],
    )

    square_dutycycle = Instrument.control(
        "FUNC:SQU:DCYC?",
        "FUNC:SQU:DCYC %f",
        """ A floating point property that controls the duty cycle of a square
        waveform function in percent, from 0.01% to 99.98%.
        The duty cycle is limited by the frequency and the minimal pulse width of
        16 ns. See manual for more details.""",
        validator=strict_range,
        values=[0.01, 99.98],
    )

    ramp_symmetry = Instrument.control(
        "FUNC:RAMP:SYMM?",
        "FUNC:RAMP:SYMM %f",
        """ A floating point property that controls the symmetry percentage
        for the ramp waveform, from 0.0% to 100.0%.""",
        validator=strict_range,
        values=[0, 100],
    )

    pulse_period = Instrument.control(
        "FUNC:PULS:PER?",
        "FUNC:PULS:PER %e",
        """ A floating point property that controls the period of a pulse
        waveform function in seconds, ranging from 33 ns to 1e6 s. Can be set
        and overwrites the frequency for *all* waveforms. If the period is
        shorter than the pulse width + the edge time, the edge time and pulse
        width will be adjusted accordingly. """,
        validator=strict_range,
        values=[33e-9, 1e6],
    )

    pulse_hold = Instrument.control(
        "FUNC:PULS:HOLD?",
        "FUNC:PULS:HOLD %s",
        """ A string property that controls if either the pulse width or the
        duty cycle is retained when changing the period or frequency of the
        waveform. Can be set to: WIDT<H> or DCYC<LE>. """,
        validator=strict_discrete_set,
        values=["WIDT", "WIDTH", "DCYC", "DCYCLE"],
    )

    pulse_width = Instrument.control(
        "FUNC:PULS:WIDT?",
        "FUNC:PULS:WIDT %e",
        """ A floating point property that controls the width of a pulse
        waveform function in seconds, ranging from 16 ns to 1 Ms, within a
        set of restrictions depending on the period.""",
        validator=strict_range,
        values=[16e-9, 1e6],
    )

    pulse_dutycycle = Instrument.control(
        "FUNC:PULS:DCYC?",
        "FUNC:PULS:DCYC %f",
        """ A floating point property that controls the duty cycle of a pulse
        waveform function in percent, from 0% to 100%.""",
        validator=strict_range,
        values=[0, 100],
    )

    pulse_transition = Instrument.control(
        "FUNC:PULS:TRAN?",
        "FUNC:PULS:TRAN:BOTH %e",
        """ A floating point property that controls the edge time in
        seconds for both the rising and falling edges. It is defined as the
        time between the 10% and 90% thresholds of the edge.
        Valid values are between 8.4 ns to 1 µs.""",
        validator=strict_range,
        values=[8.4e-9, 1e-6],
    )

    output = Instrument.control(
        "OUTP?",
        "OUTP %d",
        """ A boolean property that turns on (True, 'on') or off (False, 'off')
        the output of the function generator.""",
        validator=strict_discrete_set,
        map_values=True,
        values={True: 1, "on": 1, "ON": 1, False: 0, "off": 0, "OFF": 0},
    )

    output_load = Instrument.control(
        "OUTP:LOAD?",
        "OUTP:LOAD %s",
        """ Sets the expected load resistance (should be the load impedance connected
        to the output. The output impedance is always 50 Ohm, this setting can be used
        to correct the displayed voltage for loads unmatched to 50 Ohm.
        Valid values are between 1 and 10 kOhm or INF for high impedance.
        No validator is used since both numeric and string inputs are accepted,
        thus a value outside the range will not return an error.
        """,
    )

    burst_state = Instrument.control(
        "BURS:STAT?",
        "BURS:STAT %d",
        """ A boolean property that controls whether the burst mode is on
        (True) or off (False).""",
        validator=strict_discrete_set,
        map_values=True,
        values={True: 1, False: 0},
    )

    burst_mode = Instrument.control(
        "BURS:MODE?",
        "BURS:MODE %s",
        """ A string property that controls the burst mode. Valid values
        are: TRIG<GERED>, GAT<ED>.""",
        validator=strict_discrete_set,
        values=["TRIG", "TRIGGERED", "GAT", "GATED"],
    )

    burst_period = Instrument.control(
        "BURS:INT:PER?",
        "BURS:INT:PER %e",
        """ A floating point property that controls the period of subsequent bursts.
        Has to follow the equation burst_period > (burst_ncycles / frequency) + 1 µs.
        Valid values are 1 µs to 8000 s.""",
        validator=strict_range,
        values=[1e-6, 8000],
    )

    burst_ncycles = Instrument.control(
        "BURS:NCYC?",
        "BURS:NCYC %d",
        """ An integer property that sets the number of cycles to be output
        when a burst is triggered. Valid values are 1 to 100000. This can be
        set. """,
        validator=strict_range,
        values=range(1, 100000),
    )

    arb_file = Instrument.control(
        "FUNC:ARB?",
        "FUNC:ARB %s",
        """ A string property that selects the arbitrary signal from the volatile
        memory of the device. String has to match an existing arb signal in volatile
        memory (set by :meth:`data_arb`).""",
    )

    arb_advance = Instrument.control(
        "FUNC:ARB:ADV?",
        "FUNC:ARB:ADV %s",
        """ A string property that selects how the device advances from data point
        to data point. Can be set to 'TRIG<GER>' or 'SRAT<E>' (default). """,
        validator=strict_discrete_set,
        values=["TRIG", "TRIGGER", "SRAT", "SRATE"],
    )

    arb_filter = Instrument.control(
        "FUNC:ARB:FILT?",
        "FUNC:ARB:FILT %s",
        """ A string property that selects the filter setting for arbitrary signals.
        Can be set to 'NORM<AL>', 'STEP' and 'OFF'. """,
        validator=strict_discrete_set,
        values=["NORM", "NORMAL", "STEP", "OFF"],
    )
    # TODO: This implementation is currently not working. Do not know why.
    # arb_period = Instrument.control(
    #     "FUNC:ARB:PER?", "FUNC:ARB:PER %e",
    #     """ A floating point property that controls the period of the arbitrary signal.
    #     Limited by number of signal points. Check for instrument errors when setting
    #     this property.""",
    #     validator=strict_range,
    #     values=[33e-9, 1e6],
    # )
    #
    # arb_frequency = Instrument.control(
    #     "FUNC:ARB:FREQ?", "FUNC:ARB:FREQ %f",
    #     """ A floating point property that controls the frequency of the arbitrary signal.
    #     Limited by number of signal points. Check for instrument
    #     errors when setting this property.""",
    #     validator=strict_range,
    #     values=[1e-6, 30e+6],
    # )
    #
    # arb_npoints = Instrument.measurement(
    #     "FUNC:ARB:POIN?",
    #     """ Returns the number of points in the currently selected arbitrary trace. """
    # )
    #
    # arb_voltage = Instrument.control(
    #     "FUNC:ARB:PTP?", "FUNC:ARB:PTP %f",
    #     """ An floating point property that sets the peak-to-peak voltage for the
    #     currently selected arbitrary signal. Valid values are 1 mV to 10 V. This can be
    #     set. """,
    #     validator=strict_range,
    #     values=[0.001, 10],
    # )

    arb_srate = Instrument.control(
        "FUNC:ARB:SRAT?",
        "FUNC:ARB:SRAT %f",
        """ An floating point property that sets the sample rate of the currently selected
        arbitrary signal. Valid values are 1 µSa/s to 250 MSa/s (maximum range, can be lower
        depending on your device).""",
        validator=strict_range,
        values=[1e-6, 250e6],
    )

    def data_volatile_clear(self):
        """
        Clear all arbitrary signals from volatile memory.

        This should be done if the same name is used continuously to load
        different arbitrary signals into the memory, since an error
        will occur if a trace is loaded which already exists in the memory.
        """
        self.write("DATA:VOL:CLE")

    def phase_sync(self):
        """ Synchronize the phase of all channels."""
        self.write("PHAS:SYNC")

    def data_arb(self, arb_name, data_points, data_format="DAC"):
        """
        Uploads an arbitrary trace into the volatile memory of the device.

        The data_points can be given as:
        comma separated 16 bit DAC values (ranging from -32767 to +32767),
        as comma separated floating point values (ranging from -1.0 to +1.0)
        or as a binary data stream.
        Check the manual for more information.
        The storage depends on the device type and ranges
        from 8 Sa to 16 MSa (maximum).

        :param arb_name: The name of the trace in the volatile memory. This is used to access the
                         trace.
        :param data_points: Individual points of the trace. The format depends on the format
                            parameter.
                            format = 'DAC' (default): Accepts list of integer values ranging from
                            -32767 to +32767. Minimum of 8 a maximum of 65536 points.
                            format = 'float': Accepts list of floating point values ranging from
                            -1.0 to +1.0. Minimum of 8 a maximum of 65536 points.
                            format = 'binary': Accepts a binary stream of 8 bit data.
        :param data_format: Defines the format of data_points. Can be 'DAC' (default), 'float' or
                            'binary'. See documentation on parameter data_points above.
        """
        if data_format == "DAC":
            separator = ", "
            data_points_str = [str(item) for item in data_points]  # Turn list entries into strings
            data_string = separator.join(data_points_str)  # Join strings with separator
            self.write(f"DATA:ARB:DAC {arb_name}, {data_string}")
            return
        elif data_format == "float":
            separator = ", "
            data_points_str = [str(item) for item in data_points]  # Turn list entries into strings
            data_string = separator.join(data_points_str)  # Join strings with separator
            self.write(f"DATA:ARB {arb_name}, {data_string}")
            return
        elif data_format == "binary":  # TODO: *Binary is not yet implemented*
            raise NotImplementedError(
                'The binary format has not yet been implemented. Use "DAC" or "float" instead.'
            )
        else:
            raise ValueError(
                'Undefined format keyword was used. Valid entries are "DAC", "float" and "binary"'
            )

    display = Instrument.setting(
        "DISP:TEXT '%s'",
        """ A string property which is displayed on the front panel of
        the device.""",
    )

    def clear_display(self):
        """Removes a text message from the display."""
        self.write("DISP:TEXT:CLE")

    def trigger(self):
        """Send a trigger signal to the function generator."""
        self.write("*TRG;*WAI")

    def wait_for_trigger(self, timeout=3600, should_stop=lambda: False):
        """
        Wait until the triggering has finished or timeout is reached.

        :param timeout: The maximum time the waiting is allowed to take. If
                        timeout is exceeded, a TimeoutError is raised. If
                        timeout is set to zero, no timeout will be used.
        :param should_stop: Optional function (returning a bool) to allow the
                            waiting to be stopped before its end.

        """
        self.write("*OPC?")

        t0 = time()
        while True:
            try:
                ready = bool(self.read())
            except VisaIOError:
                ready = False

            if ready:
                return

            if timeout != 0 and time() - t0 > timeout:
                raise TimeoutError(
                    "Timeout expired while waiting for the Agilent 33220A"
                    + " to finish the triggering."
                )

            if should_stop:
                return

    trigger_source = Instrument.control(
        "TRIG:SOUR?",
        "TRIG:SOUR %s",
        """ A string property that controls the trigger source. Valid values
        are: IMM<EDIATE> (internal), EXT<ERNAL> (rear input), BUS (via trigger
        command).""",
        validator=strict_discrete_set,
        values=["IMM", "IMMEDIATE", "EXT", "EXTERNAL", "BUS"],
    )

    ext_trig_out = Instrument.control(
        "OUTP:TRIG?",
        "OUTP:TRIG %d",
        """ A boolean property that controls whether the trigger out signal is
        active (True) or not (False). This signal is output from the Ext Trig
        connector on the rear panel in Burst and Wobbel mode.""",
        validator=strict_discrete_set,
        map_values=True,
        values={True: 1, False: 0},
    )