1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
|
#
# This file is part of the PyMeasure package.
#
# Copyright (c) 2013-2024 PyMeasure Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
import logging
import weakref
import time
import re
import numpy as np
import pandas as pd
from enum import IntEnum
from collections import Counter, namedtuple, OrderedDict
from pymeasure.instruments.validators import (strict_discrete_set,
strict_range,
strict_discrete_range)
from pymeasure.instruments import Instrument, SCPIUnknownMixin
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
######################################
# Agilent B1500 Mainframe
######################################
class AgilentB1500(SCPIUnknownMixin, Instrument):
""" Represents the Agilent B1500 Semiconductor Parameter Analyzer
and provides a high-level interface for taking different kinds of
measurements.
"""
def __init__(self, adapter, name="Agilent B1500 Semiconductor Parameter Analyzer", **kwargs):
super().__init__(
adapter,
name,
**kwargs
)
self._smu_names = {}
self._smu_references = {}
@property
def smu_references(self):
"""Returns all SMU instances.
"""
return self._smu_references.values()
@property
def smu_names(self):
"""Returns all SMU names.
"""
return self._smu_names
def query_learn(self, query_type):
"""Queries settings from the instrument (``*LRN?``).
Returns dict of settings.
:param query_type: Query type (number according to manual)
:type query_type: int or str
"""
return QueryLearn.query_learn(self.ask, query_type)
def query_learn_header(self, query_type, **kwargs):
"""Queries settings from the instrument (``*LRN?``).
Returns dict of settings in human readable format for debugging
or file headers.
For optional arguments check the underlying definition of
:meth:`QueryLearn.query_learn_header`.
:param query_type: Query type (number according to manual)
:type query_type: int or str
"""
return QueryLearn.query_learn_header(
self.ask, query_type, self._smu_references, **kwargs)
def reset(self):
""" Resets the instrument to default settings (``*RST``)
"""
self.write("*RST")
def query_modules(self):
""" Queries module models from the instrument.
Returns dictionary of channel and module type.
:return: Channel:Module Type
:rtype: dict
"""
modules = self.ask('UNT?')
modules = modules.split(';')
module_names = {
'B1525A': 'SPGU',
'B1517A': 'HRSMU',
'B1511A': 'MPSMU',
'B1511B': 'MPSMU',
'B1510A': 'HPSMU',
'B1514A': 'MCSMU',
'B1520A': 'MFCMU'
}
out = {}
for i, module in enumerate(modules):
module = module.split(',')
if not module[0] == '0':
try:
out[i + 1] = module_names[module[0]]
# i+1: channels start at 1 not at 0
except Exception:
raise NotImplementedError(
f'Module {module[0]} is not implemented yet!')
return out
def initialize_smu(self, channel, smu_type, name):
""" Initializes SMU instance by calling :class:`.SMU`.
:param channel: SMU channel
:type channel: int
:param smu_type: SMU type, e.g. ``'HRSMU'``
:type smu_type: str
:param name: SMU name for pymeasure (data output etc.)
:type name: str
:return: SMU instance
:rtype: :class:`.SMU`
"""
if channel in (
list(range(101, 1101, 100))
+ list(range(102, 1102, 100))):
channel = int(str(channel)[0:-2])
# subchannels not relevant for SMU/CMU
channel = strict_discrete_set(channel, range(1, 11))
self._smu_names[channel] = name
smu_reference = SMU(self, channel, smu_type, name)
self._smu_references[channel] = smu_reference
return smu_reference
def initialize_all_smus(self):
""" Initialize all SMUs by querying available modules and creating
a SMU class instance for each.
SMUs are accessible via attributes ``.smu1`` etc.
"""
modules = self.query_modules()
i = 1
for channel, smu_type in modules.items():
if 'SMU' in smu_type:
setattr(self, 'smu' + str(i),
self.initialize_smu(
channel, smu_type, 'SMU' + str(i)))
i += 1
def pause(self, pause_seconds):
""" Pauses Command Execution for given time in seconds (``PA``)
:param pause_seconds: Seconds to pause
:type pause_seconds: int
"""
self.write("PA %d" % pause_seconds)
def abort(self):
""" Aborts the present operation but channels may still output
current/voltage (``AB``)
"""
self.write("AB")
def force_gnd(self):
""" Force 0V on all channels immediately. Current Settings can
be restored with RZ. (``DZ``)
"""
self.write("DZ")
def check_errors(self):
""" Check for errors (``ERRX?``)
"""
error = self.ask("ERRX?")
error = re.match(
r'(?P<errorcode>[+-]?\d+(?:\.\d+)?),"(?P<errortext>[\w\s.]+)',
error).groups()
if int(error[0]) == 0:
return
else:
raise OSError(
f"Agilent B1500 Error {error[0]}: {error[1]}")
def check_idle(self):
""" Check if instrument is idle (``*OPC?``)
"""
self.ask("*OPC?")
def clear_buffer(self):
""" Clear output data buffer (``BC``) """
self.write("BC")
def clear_timer(self):
""" Clear timer count (``TSR``) """
self.write("TSR")
def send_trigger(self):
""" Send trigger to start measurement (except High Speed Spot)
(``XE``)"""
self.write("XE")
@property
def auto_calibration(self):
""" Enable/Disable SMU auto-calibration every 30 minutes. (``CM``)
:type: bool
"""
response = self.query_learn(31)['CM']
response = bool(int(response))
return response
@auto_calibration.setter
def auto_calibration(self, setting):
setting = int(setting)
self.write('CM %d' % setting)
self.check_errors()
######################################
# Data Formatting
######################################
class _data_formatting_generic():
""" Format data output head of measurement value into user
readable values
:param str output_format_str: Format string of measurement value
:param dict smu_names: Dictionary of channel and SMU name
"""
channels = {"A": 101, "B": 201, "C": 301, "D": 401, "E": 501,
"F": 601, "G": 701, "H": 801, "I": 901, "J": 1001,
"a": 102, "b": 202, "c": 302, "d": 402, "e": 502,
"f": 602, "g": 702, "h": 802, "i": 902, "j": 1002,
"V": "GNDU", "Z": "MISC"}
status = {
'W': 'First or intermediate sweep step data',
'E': 'Last sweep step data',
'T': 'Another channel reached its compliance setting.',
'C': 'This channel reached its compliance setting',
'V': ('Measurement data is over the measurement range/Sweep was '
'aborted by automatic stop function or power compliance. '
'D will be 199.999E+99 (no meaning).'),
'X': ('One or more channels are oscillating. Or source output did '
'not settle before measurement.'),
'F': 'SMU is in the force saturation condition.',
'G': ('Linear/Binary search measurement: Target value was not '
'found within the search range. '
'Returns source output value. '
'Quasi-pulsed spot measurement: '
'The detection time was over the limit.'),
'S': ('Linear/Binary search measurement: The search measurement '
'was stopped. Returns source output value. '
'Quasi-pulsed spot measurement: Output slew rate was too '
'slow to perform the settling detection. '
'Or quasi-pulsed source channel reached compliance before '
'the source output voltage changed 10V '
'from the start voltage.'),
'U': 'CMU is in the NULL loop unbalance condition.',
'D': 'CMU is in the IV amplifier saturation condition.'
}
smu_status = {
1: 'A/D converter overflowed.',
2: 'Oscillation of force or saturation current.',
4: 'Another unit reached its compliance setting.',
8: 'This unit reached its compliance setting.',
16: 'Target value was not found within the search range.',
32: 'Search measurement was automatically stopped.',
64: 'Invalid data is returned. D is not used.',
128: 'End of data'
}
cmu_status = {
1: 'A/D converter overflowed.',
2: 'CMU is in the NULL loop unbalance condition.',
4: 'CMU is in the IV amplifier saturation condition.',
64: 'Invalid data is returned. D is not used.',
128: 'End of data'
}
data_names_int = {"Sampling index"} # convert to int instead of float
def __init__(self, smu_names, output_format_str):
""" Stores parameters of the chosen output format
for later usage in reading and processing instrument data.
Data Names: e.g. "Voltage (V)" or "Current Measurement (A)"
"""
sizes = {"FMT1": 16, "FMT11": 17, "FMT21": 19}
try:
self.size = sizes[output_format_str]
except Exception:
raise NotImplementedError(
("Data Format {} is not "
"implemented so far.").format(output_format_str))
self.format = output_format_str
data_names_C = {
"V": "Voltage (V)",
"I": "Current (A)",
"F": "Frequency (Hz)",
}
data_names_CG = {
"Z": "Impedance (Ohm)",
"Y": "Admittance (S)",
"C": "Capacitance (F)",
"L": "Inductance (H)",
"R": "Phase (rad)",
"P": "Phase (deg)",
"D": "Dissipation factor",
"Q": "Quality factor",
"X": "Sampling index",
"T": "Time (s)"
}
data_names_G = {
"V": "Voltage Measurement (V)",
"I": "Current Measurement (A)",
"v": "Voltage Output (V)",
"i": "Current Output (A)",
"f": "Frequency (Hz)",
"z": "invalid data"
}
if output_format_str in ['FMT1', 'FMT5', 'FMT11', 'FMT15']:
self.data_names = {**data_names_C, **data_names_CG}
elif output_format_str in ['FMT21', 'FMT25']:
self.data_names = {**data_names_G, **data_names_CG}
else:
self.data_names = {} # no header
self.smu_names = smu_names
def check_status(self, status_string, name=False, cmu=False):
"""Check returned status of instrument. If not null or end of
data, message is written to log.info.
:param status_string: Status string returned by the instrument
when reading data.
:type status_string: str
:param cmu: Whether or not channel is CMU, defaults to False (SMU)
:type cmu: bool, optional
"""
def log_failed():
log.info(
('Agilent B1500: check_status not '
'possible for status {}').format(status_string))
if name is False:
name = ''
else:
name = f' {name}'
status = re.search(
r'(?P<number>[0-9]*)(?P<letter>[ A-Z]*)',
status_string)
# depending on FMT, status may be a letter or up to 3 digits
if len(status.group('number')) > 0:
status = int(status.group('number'))
if status in (0, 128):
# 0: no error; 128: End of data
return
if cmu is True:
status_dict = self.cmu_status
else:
status_dict = self.smu_status
for index, digit in enumerate(bin(status)[2:]):
# [2:] to chop off 0b
if digit == '1':
log.info('Agilent B1500{}: {}'.format(
name, status_dict[2**index]))
elif len(status.group('letter')) > 0:
status = status.group('letter')
status = status.strip() # remove whitespaces
if status not in ['N', 'W', 'E']:
try:
status = self.status[status]
log.info(f'Agilent B1500{name}: {status}')
except KeyError:
log_failed()
else:
log_failed()
def format_channel_check_status(self, status_string, channel_string):
"""Returns channel number for given channel letter.
Checks for not null status of the channel and writes according
message to log.info.
:param status_string: Status string returned by the instrument
when reading data.
:type status_string: str
:param channel_string: Channel string returned by the instrument
:type channel_string: str
:return: Channel name
:rtype: str
"""
channel = self.channels[channel_string]
if isinstance(channel, int):
channel = int(str(channel)[0:-2])
# subchannels not relevant for SMU/CMU
try:
smu_name = self.smu_names[channel]
if 'SMU' in smu_name:
self.check_status(status_string, name=smu_name, cmu=False)
if 'CMU' in smu_name:
self.check_status(status_string, name=smu_name, cmu=True)
return smu_name
except KeyError:
self.check_status(status_string)
return channel
class _data_formatting_FMT1(_data_formatting_generic):
""" Data formatting for FMT1 format
"""
def __init__(self, smu_names={}, output_format_string="FMT1"):
super().__init__(smu_names, output_format_string)
def format_single(self, element):
""" Format single measurement value
:param element: Single measurement value read from the instrument
:type element: str
:return: Status, channel, data name, value
:rtype: (str, str, str, float)
"""
status = element[0] # one character
channel = element[1]
data_name = element[2]
data_name = self.data_names[data_name]
if data_name in self.data_names_int:
value = int(float(element[3:]))
else:
value = float(element[3:])
channel = self.format_channel_check_status(status, channel)
return (status, channel, data_name, value)
class _data_formatting_FMT11(_data_formatting_FMT1):
""" Data formatting for FMT11 format (based on FMT1)
"""
def __init__(self, smu_names={}):
super().__init__(smu_names, "FMT11")
class _data_formatting_FMT21(_data_formatting_generic):
""" Data formatting for FMT21 format
"""
def __init__(self, smu_names={}):
super().__init__(smu_names, "FMT21")
def format_single(self, element):
""" Format single measurement value
:param element: Single measurement value read from the instrument
:type element: str
:return: Status (three digits), channel, data name, value
:rtype: (str, str, str, float)
"""
status = element[0:3] # three digits
channel = element[3]
data_name = element[4]
data_name = self.data_names[data_name]
if data_name in self.data_names_int:
value = int(float(element[5:]))
else:
value = float(element[5:])
channel = self.format_channel_check_status(status, channel)
return (status, channel, data_name, value)
def _data_formatting(self, output_format_str, smu_names={}):
""" Return data formatting class for given data format string
:param output_format_str: Data output format, e.g. ``FMT21``
:type output_format_str: str
:param smu_names: Dictionary of channels and SMU names, defaults to {}
:type smu_names: dict, optional
:return: Corresponding formatting class
:rtype: class
"""
classes = {
"FMT1": self._data_formatting_FMT1,
"FMT11": self._data_formatting_FMT11,
"FMT21": self._data_formatting_FMT21
}
try:
format_class = classes[output_format_str]
except KeyError:
log.error((
"Data Format {} is not implemented "
"so far. Please set appropriate Data Format."
).format(output_format_str))
return
else:
return format_class(smu_names=smu_names)
def data_format(self, output_format, mode=0):
""" Specifies data output format. Check Documentation for parameters.
Should be called once per session to set the data format for
interpreting the measurement values read from the instrument.
(``FMT``)
Currently implemented are format 1, 11, and 21.
:param output_format: Output format string, e.g. ``FMT21``
:type output_format: str
:param mode: Data output mode, defaults to 0 (only measurement
data is returned)
:type mode: int, optional
"""
# restrict to implemented formats
output_format = strict_discrete_set(
output_format, [1, 11, 21])
# possible: [1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 25]
mode = strict_range(mode, range(0, 11))
self.write("FMT %d, %d" % (output_format, mode))
self.check_errors()
if self._smu_names == {}:
print(
'No SMU names available for formatting, '
'instead channel numbers will be used. '
'Call data_format after initializing all SMUs.'
)
log.info(
'No SMU names available for formatting, '
'instead channel numbers will be used. '
'Call data_format after initializing all SMUs.'
)
self._data_format = self._data_formatting(
"FMT%d" % output_format, self._smu_names)
######################################
# Measurement Settings
######################################
@property
def parallel_meas(self):
""" Enable/Disable parallel measurements.
Effective for SMUs using HSADC and measurement modes 1,2,10,18.
(``PAD``)
:type: bool
"""
response = self.query_learn(110)['PAD']
response = bool(int(response))
return response
@parallel_meas.setter
def parallel_meas(self, setting):
setting = int(setting)
self.write('PAD %d' % setting)
self.check_errors()
def query_meas_settings(self):
"""Read settings for ``TM``, ``AV``, ``CM``, ``FMT`` and ``MM``
commands (31) from the instrument.
"""
return self.query_learn_header(31)
def query_meas_mode(self):
"""Read settings for ``MM`` command (part of 31) from the instrument.
"""
return self.query_learn_header(31, single_command='MM')
def meas_mode(self, mode, *args):
""" Set Measurement mode of channels. Measurements will be taken in
the same order as the SMU references are passed. (``MM``)
:param mode: Measurement mode
* Spot
* Staircase Sweep
* Sampling
:type mode: :class:`.MeasMode`
:param args: SMU references
:type args: :class:`.SMU`
"""
mode = MeasMode.get(mode)
cmd = "MM %d" % mode.value
for smu in args:
if isinstance(smu, SMU):
cmd += ", %d" % smu.channel
self.write(cmd)
self.check_errors()
# ADC Setup: AAD, AIT, AV, AZ
def query_adc_setup(self):
"""Read ADC settings (55, 56) from the instrument.
"""
return {**self.query_learn_header(55), **self.query_learn_header(56)}
def adc_setup(self, adc_type, mode, N=''):
""" Set up operation mode and parameters of ADC for each ADC type.
(``AIT``)
Defaults:
- HSADC: Auto N=1, Manual N=1, PLC N=1, Time N=0.000002(s)
- HRADC: Auto N=6, Manual N=3, PLC N=1
:param adc_type: ADC type
:type adc_type: :class:`.ADCType`
:param mode: ADC mode
:type mode: :class:`.ADCMode`
:param N: additional parameter, check documentation, defaults to ``''``
:type N: str, optional
"""
adc_type = ADCType.get(adc_type)
mode = ADCMode.get(mode)
if (adc_type == ADCType['HRADC']) and (mode == ADCMode['TIME']):
raise ValueError("Time ADC mode is not available for HRADC")
command = "AIT %d, %d" % (adc_type.value, mode.value)
if not N == '':
if mode == ADCMode['TIME']:
command += (", %g" % N)
else:
command += (", %d" % N)
self.write(command)
self.check_errors()
def adc_averaging(self, number, mode='Auto'):
""" Set number of averaging samples of the HSADC. (``AV``)
Defaults: N=1, Auto
:param number: Number of averages
:type number: int
:param mode: Mode (``'Auto','Manual'``), defaults to 'Auto'
:type mode: :class:`.AutoManual`, optional
"""
if number > 0:
number = strict_range(number, range(1, 1024))
mode = AutoManual.get(mode).value
self.write("AV %d, %d" % (number, mode))
else:
number = strict_range(number, range(-1, -101, -1))
self.write("AV %d" % number)
self.check_errors()
@property
def adc_auto_zero(self):
""" Enable/Disable ADC zero function. Halves the
integration time, if off. (``AZ``)
:type: bool
"""
response = self.query_learn(56)['AZ']
response = bool(int(response))
return response
@adc_auto_zero.setter
def adc_auto_zero(self, setting):
setting = int(setting)
self.write('AZ %d' % setting)
self.check_errors()
@property
def time_stamp(self):
""" Enable/Disable Time Stamp function. (``TSC``)
:type: bool
"""
response = self.query_learn(60)['TSC']
response = bool(int(response))
return response
@time_stamp.setter
def time_stamp(self, setting):
setting = int(setting)
self.write('TSC %d' % setting)
self.check_errors()
def query_time_stamp_setting(self):
"""Read time stamp settings (60) from the instrument.
"""
return self.query_learn_header(60)
def wait_time(self, wait_type, N, offset=0):
"""Configure wait time. (``WAT``)
:param wait_type: Wait time type
:type wait_type: :class:`.WaitTimeType`
:param N: Coefficient for initial wait time, default: 1
:type N: float
:param offset: Offset for wait time, defaults to 0
:type offset: int, optional
"""
wait_type = WaitTimeType.get(wait_type).value
self.write('WAT %d, %g, %d' % (wait_type, N, offset))
self.check_errors()
######################################
# Sweep Setup
######################################
def query_staircase_sweep_settings(self):
"""Reads Staircase Sweep Measurement settings (33)
from the instrument.
"""
return self.query_learn_header(33)
def sweep_timing(self, hold, delay, step_delay=0, step_trigger_delay=0,
measurement_trigger_delay=0):
""" Sets Hold Time, Delay Time and Step Delay Time for
staircase or multi channel sweep measurement. (``WT``)
If not set, all parameters are 0.
:param hold: Hold time
:type hold: float
:param delay: Delay time
:type delay: float
:param step_delay: Step delay time, defaults to 0
:type step_delay: float, optional
:param step_trigger_delay: Trigger delay time, defaults to 0
:type step_trigger_delay: float, optional
:param measurement_trigger_delay: Measurement trigger delay time,
defaults to 0
:type measurement_trigger_delay: float, optional
"""
hold = strict_discrete_range(hold, (0, 655.35), 0.01)
delay = strict_discrete_range(delay, (0, 65.535), 0.0001)
step_delay = strict_discrete_range(step_delay, (0, 1), 0.0001)
step_trigger_delay = strict_discrete_range(
step_trigger_delay, (0, delay), 0.0001)
measurement_trigger_delay = strict_discrete_range(
measurement_trigger_delay, (0, 65.535), 0.0001)
self.write("WT %g, %g, %g, %g, %g" %
(hold, delay, step_delay, step_trigger_delay,
measurement_trigger_delay))
self.check_errors()
def sweep_auto_abort(self, abort, post='START'):
""" Enables/Disables the automatic abort function.
Also sets the post measurement condition. (``WM``)
:param abort: Enable/Disable automatic abort
:type abort: bool
:param post: Output after measurement, defaults to 'Start'
:type post: :class:`.StaircaseSweepPostOutput`, optional
"""
abort_values = {True: 2, False: 1}
abort = strict_discrete_set(abort, abort_values)
abort = abort_values[abort]
post = StaircaseSweepPostOutput.get(post)
self.write("WM %d, %d" % (abort, post.value))
self.check_errors()
######################################
# Sampling Setup
######################################
def query_sampling_settings(self):
"""Reads Sampling Measurement settings (47) from the instrument.
"""
return self.query_learn_header(47)
@property
def sampling_mode(self):
""" Set linear or logarithmic sampling mode. (``ML``)
:type: :class:`.SamplingMode`
"""
response = self.query_learn(47)
response = response['ML']
return SamplingMode(response)
@sampling_mode.setter
def sampling_mode(self, mode):
mode = SamplingMode.get(mode).value
self.write("ML %d" % mode)
self.check_errors()
def sampling_timing(self, hold_bias, interval, number, hold_base=0):
""" Sets Timing Parameters for the Sampling Measurement (``MT``)
:param hold_bias: Bias hold time
:type hold_bias: float
:param interval: Sampling interval
:type interval: float
:param number: Number of Samples
:type number: int
:param hold_base: Base hold time, defaults to 0
:type hold_base: float, optional
"""
n_channels = self.query_meas_settings()['Measurement Channels']
n_channels = len(n_channels.split(', '))
if interval >= 0.002:
hold_bias = strict_discrete_range(hold_bias, (0, 655.35), 0.01)
interval = strict_discrete_range(interval, (0, 65.535), 0.001)
else:
try:
hold_bias = strict_discrete_range(
hold_bias, (-0.09, -0.0001), 0.0001)
except ValueError as error1:
try:
hold_bias = strict_discrete_range(
hold_bias, (0, 655.35), 0.01)
except ValueError as error2:
raise ValueError(
'Bias hold time does not match either '
+ 'of the two possible specifications: '
+ f'{error1} {error2}')
if interval >= 0.0001 + 0.00002 * (n_channels - 1):
interval = strict_discrete_range(interval,
(0, 0.00199), 0.00001)
else:
raise ValueError(
f'Sampling interval {interval} is too short.')
number = strict_discrete_range(number, (0, int(100001 / n_channels)), 1)
# ToDo: different restrictions apply for logarithmic sampling!
hold_base = strict_discrete_range(hold_base, (0, 655.35), 0.01)
self.write("MT %g, %g, %d, %g" %
(hold_bias, interval, number, hold_base))
self.check_errors()
def sampling_auto_abort(self, abort, post='Bias'):
""" Enables/Disables the automatic abort function.
Also sets the post measurement condition. (``MSC``)
:param abort: Enable/Disable automatic abort
:type abort: bool
:param post: Output after measurement, defaults to 'Bias'
:type post: :class:`.SamplingPostOutput`, optional
"""
abort_values = {True: 2, False: 1}
abort = strict_discrete_set(abort, abort_values)
abort = abort_values[abort]
post = SamplingPostOutput.get(post).value
self.write("MSC %d, %d" % (abort, post))
self.check_errors()
######################################
# Read out of data
######################################
def read_data(self, number_of_points):
""" Reads all data from buffer and returns Pandas DataFrame.
Specify number of measurement points for correct splitting of
the data list.
:param number_of_points: Number of measurement points
:type number_of_points: int
:return: Measurement Data
:rtype: pd.DataFrame
"""
data = self.read()
data = data.split(',')
data = np.array(data)
data = np.split(data, number_of_points)
data = pd.DataFrame(data=data)
data = data.applymap(self._data_format.format_single)
heads = data.iloc[[0]].applymap(lambda x: ' '.join(x[1:3]))
# channel & data_type
heads = heads.to_numpy().tolist() # 2D List
heads = heads[0] # first row
data = data.applymap(lambda x: x[3])
data.columns = heads
return data
def read_channels(self, nchannels):
""" Reads data for 1 measurement point from the buffer. Specify number
of measurement channels + sweep sources (depending on data
output setting).
:param nchannels: Number of channels which return data
:type nchannels: int
:return: Measurement data
:rtype: tuple
"""
data = self.read_bytes(self._data_format.size * nchannels)
data = data.decode("ASCII")
data = data.rstrip('\r,')
# ',' if more data in buffer, '\r' if last data point
data = data.split(',')
data = map(self._data_format.format_single, data)
data = tuple(data)
return data
######################################
# Queries on all SMUs
######################################
def query_series_resistor(self):
"""Read series resistor status (53) for all SMUs."""
return self.query_learn_header(53)
def query_meas_range_current_auto(self):
"""Read auto ranging mode status (54) for all SMUs."""
return self.query_learn_header(54)
def query_meas_op_mode(self):
"""Read SMU measurement operation mode (46) for all SMUs."""
return self.query_learn_header(46)
def query_meas_ranges(self):
"""Read measruement ranging status (32) for all SMUs."""
return self.query_learn_header(32)
######################################
# SMU Setup
######################################
class SMU():
""" Provides specific methods for the SMUs of the Agilent B1500 mainframe
:param parent: Instance of the B1500 mainframe class
:type parent: :class:`.AgilentB1500`
:param int channel: Channel number of the SMU
:param str smu_type: Type of the SMU
:param str name: Name of the SMU
"""
def __init__(self, parent, channel, smu_type, name, **kwargs):
# to allow garbage collection for cyclic references
self._b1500 = weakref.proxy(parent)
channel = strict_discrete_set(channel, range(1, 11))
self.channel = channel
smu_type = strict_discrete_set(
smu_type,
['HRSMU', 'MPSMU', 'HPSMU', 'MCSMU', 'HCSMU',
'DHCSMU', 'HVSMU', 'UHCU', 'HVMCU', 'UHVU'])
self.voltage_ranging = SMUVoltageRanging(smu_type)
self.current_ranging = SMUCurrentRanging(smu_type)
self.name = name
##########################################
# Wrappers of B1500 communication methods
##########################################
def write(self, string):
"""Wraps :meth:`.Instrument.write` method of B1500.
"""
self._b1500.write(string)
def ask(self, string):
"""Wraps :meth:`~.Instrument.ask` method of B1500.
"""
return self._b1500.ask(string)
def query_learn(self, query_type, command):
"""Wraps :meth:`~.AgilentB1500.query_learn` method of B1500.
"""
response = self._b1500.query_learn(query_type)
# query_learn returns settings of all smus
# pick setting for this smu only
response = response[command + str(self.channel)]
return response
def check_errors(self):
"""Wraps :meth:`~.AgilentB1500.check_errors` method of B1500.
"""
return self._b1500.check_errors()
##########################################
def _query_status_raw(self):
return self._b1500.query_learn(str(self.channel))
@property
def status(self):
"""Query status of the SMU."""
return self._b1500.query_learn_header(str(self.channel))
def enable(self):
""" Enable Source/Measurement Channel (``CN``)"""
self.write("CN %d" % self.channel)
def disable(self):
""" Disable Source/Measurement Channel (``CL``)"""
self.write("CL %d" % self.channel)
def force_gnd(self):
""" Force 0V immediately. Current Settings can be restored with
``RZ`` (not implemented). (``DZ``)"""
self.write("DZ %d" % self.channel)
@property
def filter(self):
""" Enables/Disables SMU Filter. (``FL``)
:type: bool
"""
# different than other SMU specific settings (grouped by setting)
# read via raw command
response = self._b1500.query_learn(30)
if 'FL' in response.keys():
# only present if filters of all channels are off
return False
else:
if str(self.channel) in response['FL0']:
return False
elif str(self.channel) in response['FL1']:
return True
else:
raise NotImplementedError('Filter Value cannot be read!')
@filter.setter
def filter(self, setting):
setting = strict_discrete_set(int(setting), (0, 1))
self.write("FL %d, %d" % (setting, self.channel))
self.check_errors()
@property
def series_resistor(self):
""" Enables/Disables 1MOhm series resistor. (``SSR``)
:type: bool
"""
response = self.query_learn(53, 'SSR')
response = bool(int(response))
return response
@series_resistor.setter
def series_resistor(self, setting):
setting = strict_discrete_set(int(setting), (0, 1))
self.write("SSR %d, %d" % (self.channel, setting))
self.check_errors()
@property
def meas_op_mode(self):
""" Set SMU measurement operation mode. (``CMM``)
:type: :class:`.MeasOpMode`
"""
response = self.query_learn(46, 'CMM')
response = int(response)
return MeasOpMode(response)
@meas_op_mode.setter
def meas_op_mode(self, op_mode):
op_mode = MeasOpMode.get(op_mode)
self.write("CMM %d, %d" % (self.channel, op_mode.value))
self.check_errors()
@property
def adc_type(self):
"""ADC type of individual measurement channel. (``AAD``)
:type: :class:`.ADCType`
"""
response = self.query_learn(55, 'AAD')
response = int(response)
return ADCType(response)
@adc_type.setter
def adc_type(self, adc_type):
adc_type = ADCType.get(adc_type)
self.write("AAD %d, %d" % (self.channel, adc_type.value))
self.check_errors()
######################################
# Force Constant Output
######################################
def force(self, source_type, source_range, output, comp='',
comp_polarity='', comp_range=''):
""" Applies DC Current or Voltage from SMU immediately.
(``DI``, ``DV``)
:param source_type: Source type (``'Voltage','Current'``)
:type source_type: str
:param source_range: Output range index or name
:type source_range: int or str
:param output: Source output value in A or V
:type output: float
:param comp: Compliance value, defaults to previous setting
:type comp: float, optional
:param comp_polarity: Compliance polairty, defaults to auto
:type comp_polarity: :class:`.CompliancePolarity`
:param comp_range: Compliance ranging type, defaults to auto
:type comp_range: int or str, optional
"""
if source_type.upper() == "VOLTAGE":
cmd = "DV"
source_range = self.voltage_ranging.output(source_range).index
if not comp_range == '':
comp_range = self.current_ranging.meas(comp_range).index
elif source_type.upper() == "CURRENT":
cmd = "DI"
source_range = self.current_ranging.output(source_range).index
if not comp_range == '':
comp_range = self.voltage_ranging.meas(comp_range).index
else:
raise ValueError("Source Type must be Current or Voltage.")
cmd += " %d, %d, %g" % (self.channel, source_range, output)
if not comp == '':
cmd += ", %g" % comp
if not comp_polarity == '':
comp_polarity = CompliancePolarity.get(comp_polarity).value
cmd += ", %d" % comp_polarity
if not comp_range == '':
cmd += ", %d" % comp_range
self.write(cmd)
self.check_errors()
def ramp_source(self, source_type, source_range, target_output, comp='',
comp_polarity='', comp_range='',
stepsize=0.001, pause=20e-3):
""" Ramps to a target output from the set value with a given
step size, each separated by a pause.
:param source_type: Source type (``'Voltage'`` or ``'Current'``)
:type source_type: str
:param target_output: Target output voltage or current
:type: target_output: float
:param irange: Output range index
:type irange: int
:param comp: Compliance, defaults to previous setting
:type comp: float, optional
:param comp_polarity: Compliance polairty, defaults to auto
:type comp_polarity: :class:`.CompliancePolarity`
:param comp_range: Compliance ranging type, defaults to auto
:type comp_range: int or str, optional
:param stepsize: Maximum size of steps
:param pause: Duration in seconds to wait between steps
"""
if source_type.upper() == "VOLTAGE":
source_type = 'VOLTAGE'
cmd = 'DV%d' % self.channel
source_range = self.voltage_ranging.output(source_range).index
unit = 'V'
if not comp_range == '':
comp_range = self.current_ranging.meas(comp_range).index
elif source_type.upper() == "CURRENT":
source_type = 'CURRENT'
cmd = 'DI%d' % self.channel
source_range = self.current_ranging.output(source_range).index
unit = 'A'
if not comp_range == '':
comp_range = self.voltage_ranging.meas(comp_range).index
else:
raise ValueError("Source Type must be Current or Voltage.")
status = self._query_status_raw()
if 'CL' in status: # SMU is OFF
start = 0
elif cmd in status:
start = float(status[cmd][1]) # current output value
else:
log.info(
("{} in different state. "
"Changing to {} Source.").format(self.name, source_type))
start = 0
# calculate number of points based on maximum stepsize
nop = np.ceil(abs((target_output - start) / stepsize))
nop = int(nop)
log.info("{0} ramping from {1}{2} to {3}{2} in {4} steps".format(
self.name, start, unit, target_output, nop
))
outputs = np.linspace(start, target_output, nop, endpoint=False)
for output in outputs:
# loop is only executed if target_output != start
self.force(
source_type, source_range, output,
comp, comp_polarity, comp_range)
time.sleep(pause)
# call force even if start==target_output
# to set compliance
self.force(
source_type, source_range, target_output,
comp, comp_polarity, comp_range)
######################################
# Measurement Range
# implemented: RI, RV
# not implemented: RC, TI, TTI, TV, TTV, TIV, TTIV, TC, TTC
######################################
@property
def meas_range_current(self):
""" Current measurement range index. (``RI``)
Possible settings depend on SMU type, e.g. ``0`` for Auto Ranging:
:class:`.SMUCurrentRanging`
"""
response = self.query_learn(32, 'RI')
response = self.current_ranging.meas(response)
return response
@meas_range_current.setter
def meas_range_current(self, meas_range):
meas_range_index = self.current_ranging.meas(meas_range).index
self.write("RI %d, %d" % (self.channel, meas_range_index))
self.check_errors()
@property
def meas_range_voltage(self):
""" Voltage measurement range index. (``RV``)
Possible settings depend on SMU type, e.g. ``0`` for Auto Ranging:
:class:`.SMUVoltageRanging`
"""
response = self.query_learn(32, 'RV')
response = self.voltage_ranging.meas(response)
return response
@meas_range_voltage.setter
def meas_range_voltage(self, meas_range):
meas_range_index = self.voltage_ranging.meas(meas_range).index
self.write("RV %d, %d" % (self.channel, meas_range_index))
self.check_errors()
def meas_range_current_auto(self, mode, rate=50):
""" Specifies the auto range operation. Check Documentation. (``RM``)
:param mode: Range changing operation mode
:type mode: int
:param rate: Parameter used to calculate the *current* value,
defaults to 50
:type rate: int, optional
"""
mode = strict_range(mode, range(1, 4))
if mode == 1:
self.write("RM %d, %d" % (self.channel, mode))
else:
self.write("RM %d, %d, %d" % (self.channel, mode, rate))
self.write
######################################
# Staircase Sweep Measurement: (WT, WM -> Instrument)
# implemented:
# WV, WI,
# WSI, WSV (synchronous output)
# not implemented: BSSI, BSSV, LSSI, LSSV
######################################
def staircase_sweep_source(self, source_type, mode, source_range,
start, stop, steps, comp, Pcomp=''):
""" Specifies Staircase Sweep Source (Current or Voltage) and
its parameters. (``WV`` or ``WI``)
:param source_type: Source type (``'Voltage','Current'``)
:type source_type: str
:param mode: Sweep mode
:type mode: :class:`.SweepMode`
:param source_range: Source range index
:type source_range: int
:param start: Sweep start value
:type start: float
:param stop: Sweep stop value
:type stop: float
:param steps: Number of sweep steps
:type steps: int
:param comp: Compliance value
:type comp: float
:param Pcomp: Power compliance, defaults to not set
:type Pcomp: float, optional
"""
if source_type.upper() == "VOLTAGE":
cmd = "WV"
source_range = self.voltage_ranging.output(source_range).index
elif source_type.upper() == "CURRENT":
cmd = "WI"
source_range = self.current_ranging.output(source_range).index
else:
raise ValueError("Source Type must be Current or Voltage.")
mode = SweepMode.get(mode).value
if mode in [2, 4]:
if start >= 0 and stop >= 0:
pass
elif start <= 0 and stop <= 0:
pass
else:
raise ValueError(
"For Log Sweep Start and Stop Values must "
"have the same polarity."
)
steps = strict_range(steps, range(1, 10002))
# check on comp value not yet implemented
cmd += ("%d, %d, %d, %g, %g, %g, %g" %
(self.channel, mode, source_range, start, stop, steps, comp))
if not Pcomp == '':
cmd += ", %g" % Pcomp
self.write(cmd)
self.check_errors()
# Synchronous Output: WSI, WSV, BSSI, BSSV, LSSI, LSSV
def synchronous_sweep_source(self, source_type, source_range,
start, stop, comp, Pcomp=''):
""" Specifies Synchronous Staircase Sweep Source (Current or Voltage)
and its parameters. (``WSV`` or ``WSI``)
:param source_type: Source type (``'Voltage','Current'``)
:type source_type: str
:param source_range: Source range index
:type source_range: int
:param start: Sweep start value
:type start: float
:param stop: Sweep stop value
:type stop: float
:param comp: Compliance value
:type comp: float
:param Pcomp: Power compliance, defaults to not set
:type Pcomp: float, optional
"""
if source_type.upper() == "VOLTAGE":
cmd = "WSV"
source_range = self.voltage_ranging.output(source_range).index
elif source_type.upper() == "CURRENT":
cmd = "WSI"
source_range = self.current_ranging.output(source_range).index
else:
raise ValueError("Source Type must be Current or Voltage.")
# check on comp value not yet implemented
cmd += ("%d, %d, %g, %g, %g" %
(self.channel, source_range, start, stop, comp))
if not Pcomp == '':
cmd += ", %g" % Pcomp
self.write(cmd)
self.check_errors()
######################################
# Sampling Measurements: (ML, MT -> Instrument)
# implemented: MV, MI
# not implemented: MSP, MCC, MSC
######################################
def sampling_source(self, source_type, source_range, base, bias, comp):
""" Sets DC Source (Current or Voltage) for sampling measurement.
DV/DI commands on the same channel overwrite this setting.
(``MV`` or ``MI``)
:param source_type: Source type (``'Voltage','Current'``)
:type source_type: str
:param source_range: Source range index
:type source_range: int
:param base: Base voltage/current
:type base: float
:param bias: Bias voltage/current
:type bias: float
:param comp: Compliance value
:type comp: float
"""
if source_type.upper() == "VOLTAGE":
cmd = "MV"
source_range = self.voltage_ranging.output(source_range).index
elif source_type.upper() == "CURRENT":
cmd = "MI"
source_range = self.current_ranging.output(source_range).index
else:
raise ValueError("Source Type must be Current or Voltage.")
# check on comp value not yet implemented
cmd += ("%d, %d, %g, %g, %g" %
(self.channel, source_range, base, bias, comp))
self.write(cmd)
self.check_errors()
###############################################################################
# Additional Classes / Constants
###############################################################################
class Ranging():
"""Possible Settings for SMU Current/Voltage Output/Measurement ranges.
Transformation of available Voltage/Current Range Names to Index and back.
:param supported_ranges: Ranges which are supported (list of range indizes)
:type supported_ranges: list
:param ranges: All range names ``{Name: Indizes}``
:type ranges: dict
:param fixed_ranges: add fixed ranges (negative indizes); defaults to False
:type inverse_ranges: bool, optional
.. automethod:: __call__
"""
_Range = namedtuple('Range', 'name index')
def __init__(self, supported_ranges, ranges, fixed_ranges=False):
if fixed_ranges:
# add negative indizes for measurement ranges (fixed ranging)
supported_ranges += [-i for i in supported_ranges]
# remove duplicates (0)
supported_ranges = list(dict.fromkeys(supported_ranges))
# create dictionary {Index: Range Name}
# distinguish between limited and fixed ranging
# omitting 'limited auto ranging'/'range fixed'
# defaults to 'limited auto ranging'
inverse_ranges = {0: 'Auto Ranging'}
for key, value in ranges.items():
if isinstance(value, tuple):
for v in value:
inverse_ranges[v] = (key + ' limited auto ranging', key)
inverse_ranges[-v] = (key + ' range fixed')
else:
inverse_ranges[value] = (key + ' limited auto ranging', key)
inverse_ranges[-value] = (key + ' range fixed')
ranges = {}
indizes = {}
# only take ranges supported by SMU
for i in supported_ranges:
name = inverse_ranges[i]
# check if multiple names exist for index i
if isinstance(name, tuple):
ranges[i] = name[0] # first entry is main name (unique) and
# returned as .name attribute,
# additional entries are just synonyms and can
# be used to get the range tuple
# e.g. '1 nA limited auto ranging' is identifier and
# returned as range name
# but '1 nA' also works to get the range tuple
for name2 in name:
indizes[name2] = i
else:
# only one name per index
ranges[i] = name # Index -> Name, Name not unique
indizes[name] = i # Name -> Index, only one Index per Name
# convert all string type keys to uppercase, to avoid case-sensitivity
indizes = {key.upper(): value for key, value in indizes.items()}
self.indizes = indizes # Name -> Index
self.ranges = ranges # Index -> Name
def __call__(self, input_value):
"""Gives named tuple (name/index) of given Range.
Throws error if range is not supported by this SMU.
:param input: Range name or index
:type input: str or int
:return: named tuple (name/index) of range
:rtype: namedtuple
"""
# set index
if isinstance(input_value, int):
index = input_value
else:
try:
index = self.indizes[input_value.upper()]
except Exception:
raise ValueError(
('Specified Range Name {} is not valid or '
'not supported by this SMU').format(input_value.upper()))
# get name
try:
name = self.ranges[index]
except Exception:
raise ValueError(
('Specified Range {} is not supported '
'by this SMU').format(index))
return self._Range(name=name, index=index)
class SMUVoltageRanging():
""" Provides Range Name/Index transformation for voltage
measurement/sourcing.
Validity of ranges is checked against the type of the SMU.
Omitting the 'limited auto ranging'/'range fixed' specification in
the range string for voltage measurement defaults to
'limited auto ranging'.
Full specification: '2 V range fixed' or '2 V limited auto ranging'
'2 V' defaults to '2 V limited auto ranging'
"""
def __init__(self, smu_type):
supported_ranges = {
'HRSMU': [0, 5, 11, 20, 50, 12, 200, 13, 400, 14, 1000],
'MPSMU': [0, 5, 11, 20, 50, 12, 200, 13, 400, 14, 1000],
'HPSMU': [0, 11, 20, 12, 200, 13, 400, 14, 1000, 15, 2000],
'MCSMU': [0, 2, 11, 20, 12, 200, 13, 400],
'HCSMU': [0, 2, 11, 20, 12, 200, 13, 400],
'DHCSMU': [0, 2, 11, 20, 12, 200, 13, 400],
'HVSMU': [0, 15, 2000, 5000, 15000, 30000],
'UHCU': [0, 14, 1000],
'HVMCU': [0, 15000, 30000],
'UHVU': [0, 103]
}
supported_ranges = supported_ranges[smu_type]
ranges = {
'0.2 V': 2,
'0.5 V': 5,
'2 V': (11, 20),
'5 V': 50,
'20 V': (12, 200),
'40 V': (13, 400),
'100 V': (14, 1000),
'200 V': (15, 2000),
'500 V': 5000,
'1500 V': 15000,
'3000 V': 30000,
'10 kV': 103
}
# set range attributes
self.output = Ranging(supported_ranges, ranges)
self.meas = Ranging(supported_ranges, ranges,
fixed_ranges=True)
class SMUCurrentRanging():
""" Provides Range Name/Index transformation for current
measurement/sourcing.
Validity of ranges is checked against the type of the SMU.
Omitting the 'limited auto ranging'/'range fixed' specification in
the range string for current measurement defaults to
'limited auto ranging'.
Full specification: '1 nA range fixed' or '1 nA limited auto ranging'
'1 nA' defaults to '1 nA limited auto ranging'
"""
def __init__(self, smu_type):
supported_output_ranges = {
# in combination with ASU also 8
'HRSMU': [0, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
# in combination with ASU also 8,9,10
'MPSMU': [0, 11, 12, 13, 14, 15, 16, 17, 18, 19],
'HPSMU': [0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
'MCSMU': [0, 15, 16, 17, 18, 19, 20],
'HCSMU': [0, 15, 16, 17, 18, 19, 20, 22],
'DHCSMU': [0, 15, 16, 17, 18, 19, 20, 21, 23],
'HVSMU': [0, 11, 12, 13, 14, 15, 16, 17, 18],
'UHCU': [0, 26, 28],
'HVMCU': [],
'UHVU': []
}
supported_meas_ranges = {
**supported_output_ranges,
# overwrite output ranges:
'HVMCU': [0, 19, 21],
'UHVU': [0, 15, 16, 17, 18, 19]
}
supported_output_ranges = supported_output_ranges[smu_type]
supported_meas_ranges = supported_meas_ranges[smu_type]
ranges = {
'1 pA': 8, # for ASU
'10 pA': 9,
'100 pA': 10,
'1 nA': 11,
'10 nA': 12,
'100 nA': 13,
'1 uA': 14,
'10 uA': 15,
'100 uA': 16,
'1 mA': 17,
'10 mA': 18,
'100 mA': 19,
'1 A': 20,
'2 A': 21,
'20 A': 22,
'40 A': 23,
'500 A': 26,
'2000 A': 28
}
# set range attributes
self.output = Ranging(supported_output_ranges, ranges)
self.meas = Ranging(supported_meas_ranges, ranges,
fixed_ranges=True)
class CustomIntEnum(IntEnum):
"""Provides additional methods to IntEnum:
* Conversion to string automatically replaces '_' with ' ' in names
and converts to title case
* get classmethod to get enum reference with name or integer
.. automethod:: __str__
"""
def __str__(self):
"""Gives title case string of enum value
"""
return str(self.name).replace("_", " ").title()
# str() conversion just because of pylint bug
@classmethod
def get(cls, input_value):
"""Gives Enum member by specifying name or value.
:param input_value: Enum name or value
:type input_value: str or int
:return: Enum member
"""
if isinstance(input_value, int):
return cls(input_value)
else:
return cls[input_value.upper()]
class ADCType(CustomIntEnum):
"""ADC Type"""
HSADC = 0, #: High-speed ADC
HRADC = 1, #: High-resolution ADC
HSADC_PULSED = 2, #: High-resolution ADC for pulsed measurements
def __str__(self):
return str(self.name).replace("_", " ")
# .title() str() conversion just because of pylint bug
class ADCMode(CustomIntEnum):
"""ADC Mode"""
AUTO = 0 #:
MANUAL = 1 #:
PLC = 2 #:
TIME = 3 #:
class AutoManual(CustomIntEnum):
"""Auto/Manual selection"""
AUTO = 0 #:
MANUAL = 1 #:
class MeasMode(CustomIntEnum):
"""Measurement Mode"""
SPOT = 1 #:
STAIRCASE_SWEEP = 2 #:
SAMPLING = 10 #:
class MeasOpMode(CustomIntEnum):
"""Measurement Operation Mode"""
COMPLIANCE_SIDE = 0 #:
CURRENT = 1 #:
VOLTAGE = 2 #:
FORCE_SIDE = 3 #:
COMPLIANCE_AND_FORCE_SIDE = 4 #:
class SweepMode(CustomIntEnum):
"""Sweep Mode"""
LINEAR_SINGLE = 1 #:
LOG_SINGLE = 2 #:
LINEAR_DOUBLE = 3 #:
LOG_DOUBLE = 4 #:
class SamplingMode(CustomIntEnum):
"""Sampling Mode"""
LINEAR = 1 #:
LOG_10 = 2 #: Logarithmic 10 data points/decade
LOG_25 = 3 #: Logarithmic 25 data points/decade
LOG_50 = 4 #: Logarithmic 50 data points/decade
LOG_100 = 5 #: Logarithmic 100 data points/decade
LOG_250 = 6 #: Logarithmic 250 data points/decade
LOG_5000 = 7 #: Logarithmic 5000 data points/decade
def __str__(self):
names = {
1: "Linear",
2: "Log 10 data/decade", 3: "Log 25 data/decade",
4: "Log 50 data/decade", 5: "Log 100 data/decade",
6: "Log 250 data/decade", 7: "Log 5000 data/decade"}
return names[self.value]
class SamplingPostOutput(CustomIntEnum):
"""Output after sampling"""
BASE = 1 #:
BIAS = 2 #:
class StaircaseSweepPostOutput(CustomIntEnum):
"""Output after staircase sweep"""
START = 1 #:
STOP = 2 #:
class CompliancePolarity(CustomIntEnum):
"""Compliance polarity"""
AUTO = 0 #:
MANUAL = 1 #:
class WaitTimeType(CustomIntEnum):
"""Wait time type"""
SMU_SOURCE = 1 #:
SMU_MEASUREMENT = 2 #:
CMU_MEASUREMENT = 3 #:
###############################################################################
# Query Learn: Parse Instrument settings into human readable format
###############################################################################
class QueryLearn():
"""Methods to issue and process ``*LRN?`` (learn) command and response."""
@staticmethod
def query_learn(ask, query_type):
""" Issues ``*LRN?`` (learn) command to the instrument to read
configuration.
Returns dictionary of commands and set values.
:param query_type: Query type according to the programming guide
:type query_type: int
:return: Dictionary of command and set values
:rtype: dict
"""
response = ask("*LRN? " + str(query_type))
# response.split(';')
response = re.findall(
r'(?P<command>[A-Z]+)(?P<parameter>[0-9,\+\-\.E]+)',
response)
# check if commands are unique -> suitable as keys for dict
counts = Counter([item[0] for item in response])
# responses that start with a channel number
# the channel number should always be included in the key
include_chnum = [
'DI', 'DV', # Sourcing
'RI', 'RV', # Ranging
'WV', 'WI', 'WSV', 'WSI', # Staircase Sweep
'PV', 'PI', 'PWV', 'PWI', # Pulsed Source
'MV', 'MI', 'MSP', # Sampling
'SSR', 'RM', 'AAD' # Series Resistor, Auto Ranging, ADC
] # probably not complete yet...
response_dict = {}
for element in response:
parameters = element[1].split(',')
name = element[0]
if (counts[name] > 1) or (name in include_chnum):
# append channel (first parameter) to command as dict key
name += parameters[0]
parameters = parameters[1:]
if len(parameters) == 1:
parameters = parameters[0]
# skip second AAD entry for each channel -> contains no information
if 'AAD' in name and name in response_dict.keys():
continue
response_dict[name] = parameters
return response_dict
@classmethod
def query_learn_header(cls, ask, query_type, smu_references,
single_command=False):
"""Issues ``*LRN?`` (learn) command to the instrument to
read configuration.
Processes information to human readable values for debugging
purposes or file headers.
:param ask: ask method of the instrument
:type ask: Instrument.ask
:param query_type: Number according to Programming Guide
:type query_type: int or str
:param smu_references: SMU references by channel
:type smu_references: dict
:param single_command: if only a single command should be returned,
defaults to False
:type single_command: str
:return: Read configuration
:rtype: dict
"""
response = cls.query_learn(ask, query_type)
if single_command is not False:
response = response[single_command]
ret = {}
for key, value in response.items():
# command without channel
command = re.findall(r'(?P<command>[A-Z]+)', key)[0]
new_dict = getattr(cls, command)(
key, value, smu_references=smu_references)
ret = {**ret, **new_dict}
return ret
@staticmethod
def to_dict(parameters, names, *args):
""" Takes parameters returned by :meth:`query_learn` and ordered list
of corresponding parameter names (optional function) and returns
dict of parameters including names.
:param parameters: Parameters for one command returned
by :meth:`query_learn`
:type parameters: dict
:param names: list of names or (name, function) tuples, ordered
:type names: list
:return: Parameter name and (processed) parameter
:rtype: dict
"""
ret = OrderedDict()
if isinstance(parameters, str):
# otherwise string is enumerated
parameters_iter = [(0, parameters)]
else:
parameters_iter = enumerate(parameters)
for i, parameter in parameters_iter:
if isinstance(names[i], tuple):
ret[names[i][0]] = names[i][1](parameter, *args)
else:
ret[names[i]] = parameter
return ret
@staticmethod
def _get_smu(key, smu_references):
# command without channel
command = re.findall(r'(?P<command>[A-Z]+)', key)[0]
channel = key[len(command) :] # noqa: E203
return smu_references[int(channel)]
# SMU Modes
@classmethod
def DI(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
('Current Range',
lambda parameter:
smu.current_ranging.output(int(parameter)).name),
'Current Output (A)', 'Compliance Voltage (V)',
('Compliance Polarity',
lambda parameter: str(CompliancePolarity.get(int(parameter)))),
('Voltage Compliance Ranging Type',
lambda parameter:
smu.voltage_ranging.meas(int(parameter)).name)
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Constant Current'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def DV(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
('Voltage Range',
lambda parameter:
smu.voltage_ranging.output(int(parameter)).name),
'Voltage Output (V)', 'Compliance Current (A)',
('Compliance Polarity',
lambda parameter: str(CompliancePolarity.get(int(parameter)))),
('Current Compliance Ranging Type',
lambda parameter:
smu.current_ranging.meas(int(parameter)).name)
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Constant Voltage'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def CL(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key + parameters, smu_references)
return {smu.name: 'OFF'}
# Instrument Settings: 31
@classmethod
def TM(cls, key, parameters, smu_references={}):
names = ['Trigger Mode'] # enum + setting not implemented yet
return cls.to_dict(parameters, names)
@classmethod
def AV(cls, key, parameters, smu_references={}):
names = [
'ADC Averaging Number',
('ADC Averaging Mode',
lambda parameter: str(AutoManual(int(parameter))))
]
return cls.to_dict(parameters, names)
@classmethod
def CM(cls, key, parameters, smu_references={}):
names = [
('Auto Calibration Mode',
lambda parameter: bool(int(parameter)))
]
return cls.to_dict(parameters, names)
@classmethod
def FMT(cls, key, parameters, smu_references={}):
names = ['Output Data Format', 'Output Data Mode']
# enum + setting not implemented yet
return cls.to_dict(parameters, names)
@classmethod
def MM(cls, key, parameters, smu_references={}):
names = [
('Measurement Mode',
lambda parameter: str(MeasMode(int(parameter))))
]
ret = cls.to_dict(parameters[0], names)
smu_names = []
for channel in parameters[1:]:
smu_names.append(smu_references[int(channel)].name)
ret['Measurement Channels'] = ', '.join(smu_names)
return ret
# Measurement Ranging: 32
@classmethod
def RI(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
(smu.name + ' Current Measurement Range',
lambda parameter:
smu.current_ranging.meas(int(parameter)).name)
]
return cls.to_dict(parameters, names)
@classmethod
def RV(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
(smu.name + ' Voltage Measurement Range',
lambda parameter:
smu.voltage_ranging.meas(int(parameter)).name)
]
return cls.to_dict(parameters, names)
# Sweep: 33
@classmethod
def WM(cls, key, parameters, smu_references={}):
names = [
('Auto Abort Status',
lambda parameter:
{2: True, 1: False}[int(parameter)]),
('Output after Measurement',
lambda parameter:
str(StaircaseSweepPostOutput(int(parameter))))
]
return cls.to_dict(parameters, names)
@classmethod
def WT(cls, key, parameters, smu_references={}):
names = [
'Hold Time (s)', 'Delay Time (s)', 'Step Delay Time (s)',
'Step Source Trigger Delay Time (s)',
'Step Measurement Trigger Delay Time (s)'
]
return cls.to_dict(parameters, names)
@classmethod
def WV(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Sweep Mode",
lambda parameter: str(SweepMode(int(parameter)))),
("Voltage Range",
lambda parameter:
smu.voltage_ranging.output(int(parameter)).name),
"Start Voltage (V)", "Stop Voltage (V)", "Number of Steps",
"Current Compliance (A)", "Power Compliance (W)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Voltage Sweep Source'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def WI(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Sweep Mode", lambda parameter: str(SweepMode(int(parameter)))),
("Current Range",
lambda parameter:
smu.current_ranging.output(int(parameter)).name),
"Start Current (A)", "Stop Current (A)", "Number of Steps",
"Voltage Compliance (V)", "Power Compliance (W)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Current Sweep Source'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def WSV(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Voltage Range",
lambda parameter:
smu.voltage_ranging.output(int(parameter)).name),
"Start Voltage (V)", "Stop Voltage (V)",
"Current Compliance (A)", "Power Compliance (W)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Synchronous Voltage Sweep Source'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def WSI(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Current Range",
lambda parameter:
smu.current_ranging.output(int(parameter)).name),
"Start Current (A)", "Stop Current (A)",
"Voltage Compliance (V)", "Power Compliance (W)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Synchronous Current Sweep Source'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
# SMU Measurement Operation Mode: 46
@classmethod
def CMM(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
(smu.name + ' Measurement Operation Mode',
lambda parameter:
str(MeasOpMode(int(parameter))))
]
return cls.to_dict(parameters, names)
# Sampling: 47
@classmethod
def MSC(cls, key, parameters, smu_references={}):
names = [
('Auto Abort Status',
lambda parameter:
{2: True, 1: False}[int(parameter)]),
('Output after Measurement',
lambda parameter:
str(SamplingPostOutput(int(parameter))))
]
return cls.to_dict(parameters, names)
@classmethod
def MT(cls, key, parameters, smu_references={}):
names = [
'Hold Bias Time (s)', 'Sampling Interval (s)',
'Number of Samples', 'Hold Base Time (s)'
]
return cls.to_dict(parameters, names)
@classmethod
def ML(cls, key, parameters, smu_references={}):
names = [
('Sampling Mode',
lambda parameter: str(SamplingMode(int(parameter))))
]
return cls.to_dict(parameters, names)
@classmethod
def MV(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Voltage Range",
lambda parameter:
smu.voltage_ranging.output(int(parameter)).name),
"Base Voltage (V)", "Bias Voltage (V)",
"Current Compliance (A)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Voltage Source Sampling'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
@classmethod
def MI(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
("Current Range",
lambda parameter:
smu.current_ranging.output(int(parameter)).name),
"Base Current (A)", "Bias Current (A)",
"Voltage Compliance (V)"
]
ret = cls.to_dict(parameters, names)
ret['Source Type'] = 'Current Source Sampling'
ret.move_to_end('Source Type', last=False) # make first entry
return {smu.name: ret}
# SMU Series Resistor: 53
@classmethod
def SSR(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
(smu.name + ' Series Resistor',
lambda parameter: bool(int(parameter)))
]
return cls.to_dict(parameters, names)
# Auto Ranging Mode: 54
@classmethod
def RM(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
smu.name + ' Ranging Mode',
smu.name + ' Ranging Mode Parameter'
]
return cls.to_dict(parameters, names)
# ADC: 55, 56
@classmethod
def AAD(cls, key, parameters, smu_references={}):
smu = cls._get_smu(key, smu_references)
names = [
(smu.name + ' ADC',
lambda parameter:
str(ADCType(int(parameter))))
]
return cls.to_dict(parameters, names)
@classmethod
def AIT(cls, key, parameters, smu_references={}):
adc_type = key[3:]
adc_name = str(ADCType(int(adc_type)))
names = [
(adc_name + ' Mode',
lambda parameter:
str(ADCMode(int(parameter)))),
adc_name + ' Parameter'
]
return cls.to_dict(parameters, names)
@classmethod
def AZ(cls, key, parameters, smu_references={}):
names = [
('ADC Auto Zero',
lambda parameter: str(bool(int(parameter))))
]
return cls.to_dict(parameters, names)
# Time Stamp: 60
@classmethod
def TSC(cls, key, parameters, smu_references={}):
names = [
('Time Stamp',
lambda parameter: str(bool(int(parameter))))
]
return cls.to_dict(parameters, names)
|